• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

osuadmin

Une coma bien visible autour du noyau

30 juillet 2014 by osuadmin

Moins d’une semaine avant l’arrivée de Rosetta sur la comète 67P, les images obtenues par la caméra OSIRIS-NAC, conçue et développée par le Laboratoire d’astrophysique de Marseille (CNRS / Aix-Marseille Université) montrent clairement la présence d’une coma entourant le noyau. Tandis que cette vue par OSIRIS de la coma ne couvre qu’une zone de 150 km, cette dernière s’étend en principe bien plus loin. La zone centrale du noyau, plus brillante, se distingue de mieux en mieux.

 

Figure 1 : La coma de 67P/Churyumov-Gerasimenko telle que visible avec l’imageur OSIRIS.
L’image couvre un zone de 150 kilomètres de côté. Cette image a été prise le 25 juillet 2014. L’assombrissement de la zone centrale et la tâche circulaire à droite sont des artéfacts provenant de la surexposition due au noyau.
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

 

Figure 2 : Le noyau de la comète 67P/Churyumov-Gerasimernko vue d’une distance de 1950 kilomètres prise le 29 juillet 2014.
Chaque pixel correspond à 37 mètres approximativement. Le cou du noyau (zone centrale) se distingue de plus en plus par sa brillance.
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Classé sous :Univers Balisé avec :Communiqué de presse

La distribution de matière noire la plus précise jamais mesurée dans un amas de galaxies

24 juillet 2014 by osuadmin

Utilisant le télescope spatial Hubble (NASA/ESA), une équipe internationale d’astronomes a pu cartographier la masse d’un amas de galaxies avec la plus grande précision jamais obtenue. Cette étude réalisée à partir des observations du programme ‘Hubble Frontier Fields’ a permis de dresser une carte montrant la quantité ainsi que la distribution de la masse dans l’amas MACSJ0416.1-2403. Cet amas de galaxies très massif « pèse » 160 000 milliards de fois plus que le Soleil. La précision et le détail obtenus avec cette carte a été possible grâce à la profondeur sans précèdent des nouvelles observations faites avec Hubble, combinée à l’effet de lentille gravitationnelle.

Afin d’explorer le contenu des amas de galaxies, les astronomes utilisent souvent une astuce observationnelle : l’effet de lentille gravitationnelle créé par les amas de galaxies sur les rayons lumineux provenant de galaxies d’arrière plan. Cela fait de l’amas de galaxies un télescope (naturel) cosmique !

L’ambitieux programme d’observation « Hubble Frontier Fields » compte sur cet effet pour parvenir à son but principal : observer les premières galaxies de l’Univers – et ce en observant six amas de galaxies, parmi les plus massifs connus, incluant MACSJ0416.1-2403.

L’amas de galaxies MACSJ0416.1-2403
L’un des six amas observé par le télescope spatial Hubble dans le cadre du programme Frontier Fields. La distribution de matière noire estimée grâce à l’effet de lentille gravitationnelle apparaît en bleu sur la figure de gauche. Les arcs gravitationnels utilisés pour les reconstructions apparaissent encerclés en rouge sur l’image de droite.
Crédit : ESA/Hubble, NASA, HST Frontier Fields.

Remerciements : Mathilde Jauzac (Durham University, UK and Astrophysics & Cosmology Research Unit, South Africa),Jean-Paul Kneib (École Polytechnique Fédérale de Lausanne, Switzerland)) Eric Jullo (Laboratoire d’Astrophysique de Marseille/CNRS/Université d’Aix-Marseille) et Marceau Limousin (Laboratoire d’Astrophysique de Marseille/CNRS/Université d’Aix-Marseille)

Dans notre Univers, les fortes concentrations de masse déforment l’Espace-Temps autour d’elles. Elles agissent comme des lentilles, amplifiant et courbant la lumière émise par des objets plus distants qui les traverse.

Malgré leur masse très élevée, l’effet que les amas de galaxies produisent dans leurs régions extérieures (là où ils sont moins denses) est généralement minimal et ne peut être visible à l’œil. C’est ce que l’on appelle l’effet de lentille gravitationnelle faible, qui fait apparaître les galaxies distantes très légèrement déformées, avec une forme légèrement plus elliptique. Cependant, si l’amas est suffisamment étendu et massif, et que l’alignement entre l’amas et les objets distants est parfait, les effets observés peuvent plus spectaculaires. Les images de galaxies peuvent être déformées en anneaux et en arcs étendus de lumière, et peuvent apparaître plusieurs fois. La position et la forme de ces images multiples dépendent de la distribution de masse dans l’amas. C’est ce que l’on appelle l’effet de lentille gravitationnelle forte, et c’est ce phénomène, observé dans les six amas de galaxies ciblés par le programme « Hubble Frontier Fields », qui a été utilisé afin de tracer la distribution de masse dans MACSJ0416.1-2403, en utilisant les nouvelles données Hubble.

« La qualité des données nous permet de voir des objets extrêmement faibles, et nous a permis d’identifier beaucoup plus de galaxies lentillées que nous n’en connaissions auparavant. » explique Mathilde Jauzac de Durham University (Royaume-Unis) et Astrophysics & Cosmology Research Unit (Afrique du Sud), premier auteur de cette nouvelle publication « Frontier Fields ». « Même si l’effet de lentille forte amplifie les galaxies distantes, elles restent très lointaines et très peu brillantes. La profondeur atteinte avec les données « Frontier Fields » nous permet d’identifier des galaxies incroyablement distantes. Ces observations de MACSJ0416 nous ont permis de multiplier par quatre le nombre de galaxies lentillées connues ! »

Utilisant l’instrument ACS (Advanced Camera for Surveys), ce groupe international d’astronomes a identifié 51 nouvelles galaxies lentillées, multipliant par quatre le nombre de ces objets identifiés avec les observations précédentes, et portant le nombre total à 68. Cela correspond à presque 200 images de ces galaxies visibles dans MACSJ0416. Ce sont ces galaxies lentillées qui ont permises à Mathilde Jauzac et ses collaborateurs de reconstruire la distribution de matière visible et noire dans l’amas avec une précision jusque là inégalée. « Notre carte de masse est deux fois plus précise que celles obtenues avec les modèles précédents de cet amas ! » précise Mathilde Jauzac.

« Bien que nous sachions depuis plus de 20 ans comment reconstruire la masse d’un amas de galaxies en utilisant l’effet de lentille forte, il a fallu beaucoup de temps pour obtenir des télescopes capables d’observations de cette profondeur et de cette qualité, ainsi que pour obtenir des modèles suffisamment sophistiqués pour nous permettre d’obtenir une telle précision dans la cartographie de la masse d’un système aussi compliqué que MACSJ0416. » explique Eric Jullo membre de l’équipe et astronome adjoint au Laboratoire d’Astrophysique de Marseille..

Les observations « Frontier Fields », combinées à l’effet de lentille gravitationnelle ont ainsi permis d’ouvrir la voie vers une caractérisation plus précise des objets cosmiques distants – dans le cas actuel, un amas tellement lointain que sa lumière a voyagé pendant 4.5 milliards d’années avant de nous parvenir,.« Nous n’allons pas nous arrêter là. Afin d’obtenir une image globale de la distribution de la matière dans MACSJ0416, nous allons inclure des mesures de l’effet de lentille faible. Bien que t cet effet ne donne qu’une estimation peu précise de la masse dans les régions très centrales de l’amas – les plus denses –, il est néanmoins très important si l’on souhaite obtenir des informations sur la masse présente dans les régions externes de l’amas, » ajoute Jean-Paul Kneib, directeur de recherche au CNRS, en détachement à l’École polytechnique fédérale de Lausanne, en Suisse et l’un des membres de l’équipe.

Cette équipe de recherche continue à étudier cet amas en utilisant les données ultra-profondes de Hubble combinées aux informations détaillées provenant de l’analyse des effets de lentille forte et faible, afin de cartographier la masse à la fois dans les régions externes et internes de l’amas. Cette combinaison leur permet de détecter des sous-structures autour de l’amas. Combinant les observations de Hubble avec des mesures dans les rayons X du gaz chaud et du mouvement des galaxies, ces astronomes vont pouvoir cartographier les différentes composantes de l’amas, à savoir la matière noire, le gaz, et les étoiles.

La combinaison de toutes ces données va permettre d’améliorer l’actuelle carte de masse, permettant une vision en trois dimensions de la distribution de matière et montrant la dynamique des galaxies au sein de l’amas. Ce travail ouvre la voie vers une meilleure compréhension de l’histoire et de l’évolution de cet amas de galaxies.

Les résultats de cette analyse ont été publiés en ligne dans Monthly Notices of the Royal Astronomical Society le 24 Juillet 2014.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Collision Cosmique dans le Bullet Group

6 juin 2014 by osuadmin

Deux astronomes français, l’un travaillant à l’IRAP (OMP, Université Paul Sabatier de Toulouse et CNRS) et l’autre au LAM (Institut Pythéas, Université d’Aix-Marseille et CNRS), viennent de contribuer à la cartographie de la distribution de galaxies, de gaz chaud et de matière noire au sein du Bullet Group. Ce travail fait l’objet d’un article parut le 6 juin 2014, au sein de la revue MNRAS.

Les galaxies ne sont pas aussi isolées qu’il y paraît ; à l’échelle cosmique, elles se rassemblent en amas avec la matière noire et le gaz chaud. Sur cette image composite constituée à partir des données issues de plusieurs télescopes dont le télescope XMM-Newton de l’ESA figure, sous l’aspect d’une tâche colorée, un ensemble de galaxies baptisé Bullet Group. Ses constituants se distinguent nettement les uns des autres : ainsi le gaz chaud, de couleur rouge, et la matière noire, de couleur bleue. Cette distribution particulière résulte d’un processus de fusion s’étant produit dans le passé 1.

En dépit des grandes distances qui les séparent, les galaxies sont rarement isolées dans l’espace. Elles constituent bien souvent de grands ensembles baptisés groupes et amas de galaxies. De taille modeste, les groupes sont composés d’une cinquantaine de galaxies liées entre elles par la gravité. De dimensions plus élevées, les amas rassemblent quant à eux des centaines, voire de milliers de galaxies. Ces structures renferment également de vastes quantités de gaz chaud qui remplit l’espace entre les galaxies et brille intensément dans les régions X du spectre électromagnétique. Enfin, la matière noire, qui n’émet aucune lumière mais exerce des effets gravitationnels sur les autres objets, domine largement le budget de masse au sein de ces groupes et amas.

Cette matière noire invisible influe sur la distribution des galaxies et du gaz chaud au sein d’un groupe ou amas ; ses effets gravitationnels jouent un rôle prépondérant dans la création des structures cosmiques à grande échelle. Bien souvent, les galaxies et le gaz chaud se situent dans des poches d’univers caractérisées par les plus grandes densités de matière noire. Toutefois, lorsque des groupes ou des amas de galaxies entrent en collision, leurs constituants respectifs ne se mélangent pas parfaitement. Ces chocs cosmiques donnent lieu à de curieuses configurations : ainsi, le gaz chaud, constitué de la matière baryonique ordinaire d’un groupe ou d’un amas, se trouve éloigné des galaxies et de la matière noire.

Cette image de l’objet SL2S J08544-0121 baptisé Bullet Group laisse à penser que la formation de ce groupe résulte d’une collision de ce type. Le gaz diffus qu’il contient est si chaud qu’il émet un intense rayonnement X détecté par l’Observatoire XMM-Newton de l’ESA, figuré ici en rouge. Le gaz chaud occupe une bulle de vastes dimensions, tandis que la matière noire (figurée en bleu) et les galaxies semblent être divisées en deux parties distinctes.

Les astronomes pensent que la tâche située à droite de l’image s’est comportée à l’image d’une « balle », se déplaçant de l’extrémité inférieure gauche à l’extrémité supérieure droite de l’image. Au cours de ce processus, elle est entrée en collision avec l’autre sous-structure du groupe puis l’a traversée de part en part.

Les collisions de groupes et d’amas de galaxies se traduisent par le mélange de leurs contenus respectifs. Toutefois, chaque constituant se comporte différemment : ainsi, bien que les galaxies et la matière noire issues de chaque groupe ou amas aient pris part à la formation du Bullet Group, elles n’ont pratiquement pas été affectées par cet événement et sont restées confinées au sein de leurs sous-structures originales, comme en témoigne cette image. Au contraire, les particules de gaz chaud des deux groupes sont entrées en interaction électromagnétique les unes avec les autres, ce qui aboutit à la formation d’un vaste nuage de gaz chaud – de couleur rouge sur cette image.

Cette séparation du gaz, des galaxies et de la matière noire a été observéee dans plusieurs amas de galaxies massifs, au premier rang desquels figure le célèbre Bullet Cluster. Toutefois, elle n’a encore jamais été observée au sein d’objets de plus faible masse tels que des groupes de galaxies. Le Bullet Group constitue ainsi la structure la plus petite au sein de laquelle cet effet a été observé.

Bien qu’elle ne soit pas visible à l’œil nu – ni au travers du moindre télescope, les astronomes ont été en mesure de dresser les contours de la matière noire qui emplit le Bullet Group. Pour ce faire, ils ont mesuré son impact gravitationnel sur la lumière en provenance de galaxies lointaines, situées derrière le groupe. Un objet massif tel qu’un groupe de galaxies déforme localement l’espace-temps, lui assignant une courbure particulière. Lorsque la lumière issue de galaxies plus lointaines passe à proximité de ce groupe, elle épouse les contours de cet environnement. S’ensuivent l’apparition de curieux effets optiques. Cette distorsion se nomme effet de lentille gravitationnelle.

Si l’objet lentille est très massif et constitue, depuis la Terre, un alignement avec la source de lumière, cet effet devient saisissant : les galaxies situées en arrière plan semblent se distribuer en anneaux ou en arcs de cercle sur le fond du ciel ; parfois même, des images multiples d’une même galaxie se forment.

Un tel effet se manifeste à droite du centre de l’image : une galaxie sphérique et brillante du Bullet Group est entourée de curieux arcs de lumière – il s’agit là de l’image déformée d’une autre galaxie située en arrière plan.

L’étude des constituants de ces naufragés cosmiques permet aux astronomes de mieux définir les propriétés de la matière noire. En particulier, la scission entre matière noire et gaz chaud permet de contraindre la présence (ou l’absence) d’interaction entre la matière noire et la matière ordinaire, et ainsi d’en savoir un peu plus sur cette mystérieuse composante. La possibilité d’observer cet effet au sein d’objets de plus faibles dimensions tel que le Bullet Group, en nombre nettement supérieur à celui des amas de galaxies plus massifs, ouvre de nouvelles perspectives d’étude du rôle de la matière noire à l’échelle de l’univers tout entier.

Image composée du Bullet Group
Image composée du Bullet Group montrant des galaxies, du gaz chaud (en rose) et de la matière noire (indiquée en bleu).
Crédit : ESA / XMM-Newton / F. Gastaldello (INAF/IASF, Milano, Italy) / CFHTLS
1. Cette image composite est constituée d’une image acquise par l’observatoire XMM-Newton de l’ESA dans le domaine X (le gaz chaud en rouge), d’une image optique (RVB) acquise par le Télescope Canada-France-Hawai (CFHT), et en bleu des contours de la matière noire, issue d’une analyse à partir des données provenant du CFHT, du Télescope Spatial Hubble du consortium NASA/ESA et de l’Observatoire W.M. Keck. En avant-plan surgissent de brillantes étoiles qui peuplent notre galaxie.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Rosetta détecte le réveil de la comète 67P / Churyumov-Gerasimenko

15 mai 2014 by osuadmin

La sonde Rosetta continue son approche de la comète 67P/Churyumov-Gerasimenko. Elle l’atteindra en août pour se mettre en orbite autour puis, en novembre, après avoir cartographié la surface de la comète, Rosetta tentera d’y poser Philae, son atterrisseur. Ces premières images de l’approche nous permettent d’assister à la naissance et au développement de la coma, ou chevelure de la comète, au fur et à mesure que celle-ci s’approche du Soleil. Elles ont été obtenues par la camera OSIRIS-NAC. Cet instrument imageur à haute résolution spatiale a été conçu et développé par le Laboratoire d’Astrophysique de Marseille (CNRS / Aix-Marseille Université) en partenariat avec la société ASTRIUM et plusieurs laboratoires européens.

L’image de gauche obtenue le 30 avril dernier par la caméra OSIRIS-NAC montre la comète sur le même fond de champ d’étoiles que dans l’animation ci-dessous. À droite, l’agrandissement a été réalisé en additionnant un grand nombre d’images, chacune obtenue avec un temps d’exposition de 10 minutes afin de mettre en évidence la coma qui s’étend sur plus de 1300 kilomètres à partir du noyau cométaire. (©ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

La comète est actuellement à plus de 4 UA (unité astronomique), soit quatre fois la distance Terre-Soleil. Nous assistons à son réveil, c’est-à-dire au démarrage de l’activité spécifiquement dédiée à l’étude de la comète : les glaces commencent à se sublimer et entrainent dans leur expansion de fines particules de poussière qui réfléchissent la lumière solaire. Dans les mois à venir et à l’approche de la comète, la sonde Rosetta pénètrera dans ce nuage de gaz et de poussière et pourra en analyser leur composition.

À partir de la variation périodique de la luminosité du noyau, l’équipe OSIRIS a pu préciser sa période de rotation, soit 12,4 heures, en bon accord avec la valeur déterminée par P. Lamy (LAM) à partir d’observations réalisées en 2003 avec le télescope spatial Hubble. Cette information est importante pour la planification des observations des différents instruments de Rosetta.

https://osupytheas.fr/ressources/wp-content/uploads/sites/2/2023/06/Comete-67P_mouvement.mp4
La comète 67P/Churyumov-Gerasimenko se déplaçant en avant-plan d’un champ d’étoiles alors que Rosetta se rapproche de la comète de 5 millions à 2 millions de kilomètres en 41 jours (entre les 24 mars et 4 mai derniers)
La séquence animée est composée d’une succession d’images prise par l’instrument OSIRIS/NAC, la caméra la plus puissante de Rosetta. Le montage permet ainsi de voir la comète 67P/Churyumov-Gerasimenko se déplaçant en avant-plan d’un champ d’étoiles alors que Rosetta se rapproche de la comète de 5 millions à 2 millions de kilomètres en 41 jours (entre les 24 mars et 4 mai derniers). Durant ce laps de temps, Rosetta – et la comète – passent de 640 millions à 610 millions de kilomètres du Soleil. C’est ce rapprochement vers le Soleil qui engendre le développement de la coma de la comète, que l’on commence à percevoir sur les images.

Classé sous :Univers Balisé avec :Communiqué de presse

Hausse récente du niveau de la mer

23 mars 2014 by osuadmin

Les satellites altimétriques (Topex/Poseidon, Jason-1&2, Envisat) nous indiquent que depuis deux décennies, le niveau de la mer s’est élevé d’environ 3 mm/an en moyenne globale. Cependant, si on estime séparément la hausse de la 1ère et la 2ème de ces deux décennies, on obtient des valeurs assez contrastées, de l’ordre de 3.5 mm/an et 2.4 mm/an respectivement. Ce ralentissement de la hausse de la mer depuis le début des années 2000 a été mis en parallèle avec la ‘pause’ de l’évolution de la température moyenne de la Terre depuis 10-15 ans et a alimenté les débats sur un possible ralentissement du réchauffement climatique global.

Dans un article publié fin mars dans Nature Climate Change, une équipe regroupant des chercheurs du LEGOS (Observatoire Midi-Pyrénées), du CNRM (CNRS, Météo-France) et du MIO (Université de Aix-Marseille et Toulon) a montré que les contrastes entre les années 1990 et 2000 résultent essentiellement de la variabilité climatique interne et plus particulièrement de l’impact des évènements ENSO, El Niño et la Nina.

Durant El Nino, on observe un excès de précipitations sur l’océan Pacifique tropical et un déficit de pluie sur les continents des régions tropicales. Ceci crée une augmentation temporaire de la masse de l’océan et donc du niveau de la mer. Le phénomène inverse est observé durant La Nina.

Au cours des années 1990, plusieurs évènements El Nino ont eu lieu, dont l’intense El Nino de 1997-1998, alors que les 10 années qui ont suivi ont été marquées par une succession d’épisode La Nina, induisant des baisses temporaires de la mer. Ces anomalies positives et négatives du niveau moyen global de la mer ont un impact sur la tendance.

Courbes des variations du niveau de la mer et de ces contributions
Courbes des variations du niveau de la mer et de ces contributions une fois que les tendances sur 18 ans ont été supprimées. En noir, Les variations inter-annuelles du niveau de la mer et en bleu les variations du contenu en eau sur les continents estimées à partir du modèle ISBA/TRIP. Aux données de cette courbe bleue ont été ajoutées les variations inter-annuelle de la composante thermostérique (qui traduit l’effet sur le hausse du niveau de la mer du réchauffement océans déduits de mesures in situ) pour aboutir à la courbe rouge.
Crédit : LEGOS, CNRS, MIO

En corrigeant de façon quantitative la variabilité interannuelle liée à ENSO, l’équipe a montré que la hausse de la mer des deux décennies est alors identique, de 3.3 mm/an. Cette étude montre qu’une fois la variabilité climatique interne corrigée, on n’observe pas de ralentissement de la hausse de la mer au cours de la dernière décennie, donc des contributions climatiques (expansion thermique de l’océan, fonte des glaces). Ce résultat est cohérent avec des fortes pertes de masse des glaciers et calottes (notamment de la calotte groenlandaise au cours des dernières années) et suggère de plus une contribution non négligeable du réchauffement de l’océan profond à la hausse récente de la mer. Il semble confirmer enfin qu’il n’y a pas de ‘pause’ du réchauffement global, mais que la variabilité naturelle à court terme peut parfois masquer ses effets.

Classé sous :Atmosphère, Océan Balisé avec :Communiqué de presse

Parution dans Nature : « Reconciliation of the carbon budget in the ocean’s twilight zone »

19 mars 2014 by osuadmin

Publié en ligne dans la revue Nature le 19 mars 2014, cet article qui implique Christian Tamburini, chercheur du MIO et Mehdi Boutrif, doctorant, traite du rôle de l’océan profond dans le cycle du carbone.

Environ 100 gigatonnes de carbone organique sont produits chaque année, sous l’effet de la photosynthèse dans l’océan de surface. Cinq à quinze pour cent sont exportés dans l’océan profond. Le taux de conversion de ce carbone en dioxyde de carbone par des organismes hétérotrophes en profondeur est un important élément de contrôle du stock de carbone dans l’océan.

Voir en ligne

 

Classé sous :Océan Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • Pages provisoires omises …
  • Page 52
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter