• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Résultat scientifique

La naissance de monstres : VISTA détecte les premières galaxies géantes

18 novembre 2015 by osuadmin

VISTA, l’un des télescopes de sondage de l’ESO, a scruté un ensemble de galaxies massives longtemps demeurées inconnues bien qu’elles soient contemporaines de l’Univers jeune. La découverte, suivie de l’étude de cet échantillon – le plus vaste à ce jour, a permis aux astronomes, parmi lesquels des chercheurs du Laboratoire d’Astrophysique de Marseille (Institut Pythéas / CNRS – Université d’Aix-Marseille) de dater, pour la toute première fois, l’époque de formation de ces monstres galactiques.

Le simple fait de dénombrer les galaxies peuplant une région du ciel permet aux astronomes de tester leurs théories de formation et d’évolution galactiques. Cette tâche, au demeurant simple, se complexifie toutefois à mesure que la distance des galaxies augmente et que leur luminosité diminue. En outre, les galaxies les plus brillantes et les plus faciles à observer – les galaxies les plus massives de l’Univers – sont d’autant plus rares que les astronomes scrutent le passé de l’Univers, tandis que les galaxies moins brillantes et plus nombreuses sont toujours plus difficiles à détecter. Une équipe d’astronomes dirigée par Karina Caputi de l’Institut Astronomique Kapteyn à l’Université de Groningen, a mis au jour l’existence de nombreuses galaxies distantes qui avaient échappé à tout examen antérieur. Pour ce faire, l’équipe a utilisé des images acquises dans le cadre du sondage UltraVISTA, l’un des six projets de sondage du ciel à des longueurs d’ondes proches de l’infrarouge impliquant  VISTA, et recensé les galaxies faiblement lumineuses peuplant l’Univers lorsque ce dernier était âgé de 0,75 à 2,1 milliards d’années. UltraVISTA a observé la même région du ciel, dont les dimensions avoisinent celles de quatre pleines Lunes, depuis décembre 2009. Il s’agit là de la plus vaste région du ciel jamais imagée à ces profondeurs et à des longueurs d’onde infrarouges. L’équipe a ensuite combiné les observations UltraVISTA à celles du Télescope Spatial Spitzer de la NASA, chargé de sonder le ciel à de plus grandes longueurs d’onde, dans l’infrarouge moyen.  1 “Nous avons découvert 574 nouvelles galaxies massives – l’échantillon le plus vaste à ce jour de ces galaxies cachées au sein de l’Univers jeune”, déclare Karina Caputi. “En les étudiant, nous avons été en mesure de répondre à une question simple mais ô combien importante : à quelle époque les premières galaxies massives sont-elles apparues ?” Imager le ciel dans le proche infrarouge a permis aux astronomes de détecter la présence d’objets extrêmement lointains 2, contemporains de l’Univers jeune, et dont l’existence se trouve masquée par la poussière. L’équipe a découvert une brusque augmentation du nombre de ces galaxies sur une courte période. Une part importante des galaxies massives  3 qui peuplent aujourd’hui l’Univers proche existait déjà trois milliards d’années après le Big Bang. “Nous n’avons pas trouvé la preuve de l’existence de ces galaxies massives moins d’un milliard d’années après le Big Bang. Nous en déduisons que les premières galaxies massives se sont certainement formées à cette époque”, conclut Henry Joy McCracken, co-auteur de l’article  4. Les astronomes ont par ailleurs découvert que les galaxies massives étaient plus nombreuses que supposé. Les galaxies jadis masquées représentent la moitié du nombre total de galaxies massives contemporaines de l’Univers alors âgé de 1,1 à 1,5 milliard d’années  5. Toutefois, ces nouveaux résultats contredisent les modèles actuels décrivant l’évolution des galaxies dans l’Univers jeune, qui ne prévoient pas l’existence de monstres galactiques à des époques aussi reculées. Pour compliquer davantage encore la situation : si les galaxies massives de l’Univers jeune étaient plus poussiéreuses qu’attendu, même UltraVISTA ne pourrait les détecter. Si tel était effectivement le cas, notre conception actuelle de la formation des galaxies dans l’Univers jeune devrait également être entièrement révisée. Le Vaste Réseau (Sub-)Millimétrique de l’Atacama (ALMA) partira à son tour à la recherche de ces galaxies poussiéreuses. Une fois découvertes, elles constitueront des cibles d’observation privilégiées de l’E-ELT (l’Extrêmement Grand Télescope Européen de 39 mètres de l’ESO), qui fournira des images détaillées de certaines de ces toutes premières galaxies.

 

1. Le télescope VISTA de l’ESO a effectué ses observations dans le proche infrarouge, à des longueurs d’onde comprises entre 0,88 et 2,15 μm, tandis que Spitzer observait dans l’infrarouge moyen, entre 3,6 et 4,5 μm.
2. En raison de l’expansion de l’Univers, une galaxie semble s’éloigner d’autant plus vite d’un observateur terrestre qu’elle en est distante. Cet étirement se traduit par le rougissement du spectre de lumière de ces objets lointains, et explique la raison pour laquelle leur observation doit s’effectuer dans les domaines du proche infrarouge et de l’infrarouge moyen.
3. Dans ce contexte, le terme “massif” désigne des objets dont la masse excède les 50 milliards de masses solaires – une quantité qu’avoisine la masse totale des étoiles de la Voie Lactée.
4. L’équipe n’a pas trouvé de traces de l’existence de galaxies massives au-delà d’un redshift de 6, c’est-à-dire aux époques antérieures à 0,9 milliards d’années après le Big Bang.
5. Cela correspond à un redshift compris entre z=5 et z=4.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

L’Arctique en pleine transformation

14 avril 2020 by osuadmin

Suite aux deux expéditions océanographiques menées en 2015 en Arctique dans le cadre du programme international GEOTRACES, des chercheurs de la Woods hole oceanographic institution (WHOI) et leurs collègues internationaux [1] ont mis en évidence que des quantités importantes de carbone et d’éléments traces en provenance des rivières et sédiments du plateau continental étaient apportées près du Pôle Nord par la dérive transpolaire, un important courant de surface. Associé au réchauffement climatique, cet apport de nutriments et contaminants pourrait modifier la productivité phytoplanctonique dans l’Arctique.

Les éléments traces, comme le fer, sont des nutriments essentiels à la vie océanique. Ils alimentent la croissance du phytoplancton, ces algues microscopiques qui constituent la base de la chaîne alimentaire marine. En général, plus de phytoplancton conduit à davantage de zooplancton (petits poissons et crustacés), qui peut ensuite être consommé par les prédateurs océaniques « supérieurs » comme les phoques et les baleines. Les contaminants, notamment le mercure, suivent le même chemin et des niveaux très élevés chez les animaux arctiques ont été retrouvés.

PNG - 1.6 Mo
Rencontre des brise-glaces FS Polarstern et USCGC Healy au Pôle Nord, le 7 septembre 2015.
Crédit : Stefan Hendricks, AWI

En 2015, les océanographes effectuant des recherches dans l’océan Arctique dans le cadre du programme international GEOTRACES ont trouvé des concentrations de carbone et d’éléments traces beaucoup plus élevées dans les eaux de surface situées près du Pôle Nord que dans celles situées de chaque côté de la dérive transpolaire, un important courant de surface capable de transporter, à travers l’océan Arctique en passant par le Pôle Nord, les eaux provenant du plateau continental sibérien.

Les nombreux éléments traces qui pénètrent dans l’océan mondial en provenance des rivières et des sédiments du plateau continental sont en général rapidement éliminés de la colonne d’eau. En revanche, les chercheurs ont mis en évidence que, dans l’océan Arctique, les éléments traces étaient liés à l’abondante quantité de matière organique issue des rivières, ce qui leur permettait d’être transportés par la dérive transpolaire jusqu’à l’Arctique central, à plus de 1 000 kilomètres de leurs sources.

Du fait du réchauffement climatique, les chercheurs s’attendent à ce que le dégel des sols conduise à une augmentation du ruissellement et donc de l’apport d’éléments traces auparavant piégés dans le pergélisol, ce qui pourrait entraîner une augmentation de la quantité de nutriments et contaminants atteignant le centre de l’océan Arctique. Or, à mesure que l’Arctique se réchauffe et que de grandes parties de l’océan se libèrent de la glace pendant de longues périodes, les algues marines deviennent plus productives. Un plus grand apport de nutriments pourrait donc alimenter encore davantage cette production d’algues.

Pour l’instant, si les chercheurs savent que la structure des écosystèmes marins est déterminée par la disponibilité des nutriments, ils ne peuvent dire exactement quels changements tout cela pourrait induire. Concernant le mercure, dont le cycle biogéochimique est étroitement lié à la photochimie et aux flux d’échanges importants à l’interface atmosphère – océan, de fortes modifications sont également attendues avec la disparition de la glace de mer en été.

Bien qu’une augmentation des nutriments puisse stimuler la productivité marine de l’Arctique, les chercheurs mettent en garde sur le fait que la perte continue de glace de mer aggrave le réchauffement climatique, ce qui aura un impact plus large sur les écosystèmes.

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

La nature ordinaire agricole pourrait rendre de nombreux services

14 mars 2022 by osuadmin

A travers le monde, si de nombreux travaux de recherche ont eu pour objectifs de caractériser et de mesurer les services écosystémiques [1] des espaces abritant une biodiversité qualifiée « d’extraordinaire » de par sa richesse et/ou la présence d’espèces rares, beaucoup moins d’études se sont intéressées aux services écosystémiques rendus par les espaces abritant une nature qualifiée « d’ordinaire ». Celle-ci est la nature composée d’espèces et d’habitats communs possédant une faible complexité écologique. Elle comprend notamment une très grande partie des espaces agricoles cultivés de manière conventionnelle. Cette nature ordinaire agricole est aussi très menacée par les changements environnementaux comme l’extension des surfaces urbanisées. Bien qu’ordinaire, cette nature pourrait cependant rendre de nombreux services écosystémiques tels que la fixation du carbone atmosphérique, la filtration des eaux, la lutte contre l’érosion des sols, etc . Face à l’imperméabilisation croissante des terres agricoles, ces services devraient alors être mesurés et compensés au-delà de la perte de production. C’est ce que révèlent des travaux parus dans la revue Agronomy for Sustainable Development.

Deux écologues de l’Institut méditerranéen de biodiversité et d’écologie marine et continentale (IMBE) ont cherché à savoir quels services écosystémiques avaient déjà été identifiés dans des agroécosystèmes aussi communs que des champs cultivés intensivement ou des prairies artificielles.

En 2019, une étude de la bibliographie scientifique internationale suivie d’une analyse qualitative et quantitative des données extraites des articles sélectionnés a permis de sélectionner un total de 616 publications dont 189 ont été retenues après lecture de l’intégralité des textes (Vidaller & Dutoit, 2021). Les résultats ont montré que ce sont les services de régulation qui sont les plus étudiés (85,7 %) dans les agroécosystèmes conventionnels, suivis des services de support (58,7 %), d’approvisionnement (55,6 %) et enfin les services culturels qui reçoivent alors logiquement le moins d’attention (24,9 %) car ces espaces sont composés de prairies artificielles, de cultures arables, vignes et vergers intensifs, etc.

JPEG - 240.4 ko
Une prairie artificielle fauchée dans le sud de la France, un exemple de nature ordinaire agricole
Crédit : Christel Vidaller /IMBE/CNRS

Les articles consultés sont principalement concentrés sur les services qui pourraient soutenir et/ou fournir un avantage aux agriculteurs comme par exemple les services de pollinisation (36.5%), la lutte antiparasitaire (48.1%) et le cycle des nutriments (49.7%). La séquestration du carbone (46,6 %) a aussi souvent été mesurée, témoignant de la récente inquiétude suscitée par l’augmentation des niveaux de CO2 atmosphérique. La fourniture de biodiversité (40,7%) a aussi été évaluée même pour des systèmes agricoles conventionnels pourtant réputés pauvres en habitats et biodiversité.

Pour terminer, les principaux bénéficiaires des services écosystémiques identifiés dans les articles analysés étaient les agriculteurs eux-mêmes (95,2 %) via notamment les services de la formation du sol, de la production primaire et du cycle des éléments nutritifs. Comme les agroécosystèmes sont exploités pour améliorer l’offre de services, il est donc normal que les agriculteurs soient les principaux bénéficiaires des services écosystémiques produits.

Après cette première synthèse ayant permis d’identifier et de caractériser les services écosystémiques rendus par la nature ordinaire agricole, le prochain défi sera de mesurer quantitativement ces services écosystémiques et de bien évaluer les compromis et synergies entre ces services et les éventuels « disservices », qui sont les fonctions négatives pour le bien-être humain. Dans les agroécosystèmes intensifs, il peut s’agir de l’érosion, de la perte d’habitat de la faune, des émissions de gaz à effet de serre ou encore le la contamination des humains et d’autres espèces par les pesticides.

Ces études, réalisées dans le cadre d’un projet financé par l’Agence Nationale de la Recherche, devraient alors permettre de mieux prendre en compte la nature ordinaire dans les mécanismes de conservation/restauration et de les inclure notamment dans la séquence Eviter-Réduire-Compenser des études d’impact. En effet, à la compensation de la perte de production agricole, devrait s’additionner une compensation écologique des services perdus. Il pourrait ainsi être proposé de compenser la destruction des espaces de nature ordinaire agricole via le financement des agriculteurs pour qu’ils mettent en place des pratiques agro-écologiques telles que des techniques culturales simplifiées ou des cultures sous couverts. Il a en effet déjà été démontré que les systèmes d’agriculture moins intensifs (traditionnels, raisonnés, biologiques, etc.) fournissent plus de services écosystémiques que les pratiques agricoles conventionnelles. Ce type de mesure pourrait alors être un élément réellement incitatif pour accélérer la nécessaire transition écologique de l’agriculture française.

Classé sous :Écologie Balisé avec :Communiqué de presse, Résultat scientifique

Grâce à Rosetta, la comète 67P/Churyumov–Gerasimenko continue de livrer ses secrets

13 octobre 2015 by osuadmin

Plusieurs équipes de chercheurs français du LATMOS 1, LPC2E 2, CRPG 3, LAM 4, IRAP 5 impliqués dans l’analyse des observations effectuées par les instruments embarqués à bord de la sonde Rosetta (ESA) nous révèlent l’absence de lien pour certains éléments chimiques entre notre Terre et les atmosphères cométaires. Dans le même temps, des chercheurs de l’Observatoire de la Côte d’Azur ont montré que l’activité précoce de la comète est dûe aux fortes variations de temperature engendrées par les processus d’ombrage de la surface topographique. Ces travaux sont parus dans les revues Science et The Astrophysical Journal Letters, 810 :L22

Froids et inactifs loin du soleil, les noyaux cométaires glacés se vaporisent à l’approche du système solaire interne, libérant sous l’effet des radiations solaires un flux de gaz et de poussières. La chevelure et la queue de la comète ainsi formées, la coma, les différencient alors des autres petits corps inactifs du système solaire : les astéroïdes.

  • L’eau, le carbone, l’azote terrestre ne seraient pas d’origine cométaire

L’instrument ROSINA développé par une équipe internationale sous la coordination de Kathrin Altwegg (Université de Berne, Suisse) et embarqué à bord de la sonde ROSETTA, analyse ainsi la composition des gaz de la comète 67P/Churyumov-Gerasimenko par spectrométrie de masse. Cet instrument permet l’analyse élémentaire et isotopique de ces gaz.

Les résultats montrent que la glace cométaire est riche en deutérium, avec un rapport Deutérium/Hydrogène trois fois supérieur à la valeur des océans terrestres, ce qui interdit une filiation directe entre ce type de comète et l’eau terrestre 6.

Par ailleurs, pour la première fois un gaz rare, l’argon a été détecté dans une coma cométaire, et ce, en grande quantité 7. Les gaz rares sont importants en tant que traceurs de l’origine et de l’évolution des atmosphères des planètes internes (Vénus la Terre et Mars). Cette mesure d’argon confirme pleinement que les élements majeurs qui forment l’atmosphère terrestre et les océans (l’eau, le carbone, et l’azote) ne peuvent provenir de comètes de type 67P, et auraient été apportés par des astéroïdes riches en volatils. Par contre, elles suggèrent qu’une fraction importante des gaz rares sont d’origine cométaire (Marty et al., soumis).

Cet instrument a également mesuré en continu la composition de la coma (H2O, CO2, CO, N2…) 8 et a montré son hétérogénéité chimique. Ces mesures permettent de mieux connaître les conditions de formation de la glace cométaire, dont sa température (autour de 30-40 K) 9.

  • L’activité de la comète trahie par son ombre…
Comparaison entre la carte de variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014 et une image de 67P prise le 2 septembre 2014
Crédit : ESA/Rosetta/Navcam/Bob King

Voir la modélisation :

https://osupytheas.fr/ressources/wp-content/uploads/sites/2/2015/10/Variation-temperature-67P-1.mp4

Variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014

L’imageur NAVCAM a révélé de façon inattendue que l’activité précoce de 67P, matérialisée par des jets de gaz et de poussières et encore mal comprise, se produisait principalement dans la zone concave du cou, entre les 2 lobes principaux (cf. Fig). Or, cette région est la moins exposée au Soleil et devrait être en moyenne plus froide, et donc moins propice à la sublimation de la glace que les autres régions de la comète.

Pour comprendre ce paradoxe les chercheurs de l’Observatoire de la Côte d’Azur 10 ont utilisé un modèle thermophysique prenant en compte la conductivité thermique et la topographie complexe de la comète pour calculer une carte de température de sa surface au cours de ses rotations. Ce modèle leur a permis de mettre en évidence que la région du cou présentait entre août et Décembre 2014 les variations de température les plus rapides en réponse au processus d’ombrage par les terrains environnants. Une nouvelle relation de cause à effet est donc mise au jour entre ces variations thermiques de surface et l’activité précoce de la comète.

Il a déjà été observé que des variations rapides de température peuvent induire de la fracturation à la surface des petits corps du système solaire (Delbo et al. 2014). Les auteurs proposent dans cet article que le taux d’érosion de la surface de la comète, lié à cette fracturation thermique, soit plus élevé dans le cou qu’ailleurs. Cette fracturation du matériau de surface permet la pénétration des radiations solaires plus en profondeur. Ceci expliquerait pourquoi la région du cou révèle à l’analyse plus de glace que les autres régions et pourquoi elle est la principale source de gaz de la comète (cf. Fig). Plus généralement, ces résultats suggèrent que la fracturation par effet thermique (formation du régolite) doit être beaucoup plus rapide à la surface des corps sans atmosphère présentant des concavités importantes (formation d’ombre) que ne le prévoit les estimations actuellement disponibles.

1. LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune, F-94100 Saint-Maur, France.
2. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS – Université d’Orléans, France.
3. Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France.
4. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France.
5. Université de Toulouse–UPS-OMP–IRAP, Toulouse, France. 6CNRS–IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France.
6. Altwegg, K et al. 2015. 67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio. Science 347 : 1261952–1.
7. Balsiger, H. et al. 2015. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko Science Advances 2015, 1500377 (online)
8. Hässig, M. et al. 2015. Time Variability and Heterogeneity in the Coma of 67P/Churyumov-Gerasimenko. Science 347 : aaa0276–1.
9. Rubin, M. et al. 2015. Molecular Nitrogen in Comet 67P/Churyumov-Gerasimenko Indicates a Low Formation Temperature. Science : 1–4. aaa6100.
10. Alí-Lagoa V., Delbo M., Libourel G. (2015) Rapid temperature changes and the early activity on comet 67P/CHURYUMOV-GERASIMENKO. The Astrophysical Journal Letters, 810 :L22

Classé sous :Atmosphère, Univers Balisé avec :Communiqué de presse, Résultat scientifique

L’océan au cœur de l’évolution des glaciers de montagne depuis 11 000 ans

15 avril 2022 by osuadmin

Aujourd’hui, les glaciers de montagnes reculent dans presque toutes les régions du monde, mais comment ont-ils évolué autrefois ? Une équipe de recherche internationale a analysé l’évolution plurimillénaire de plus de 80 glaciers dans différentes régions du monde au cours de l’Holocène (les 11 000 dernières années). Elle a découvert que les glaciers tropicaux andins, alpins, nord-américains et groenlandais ont eu une même évolution à l’échelle millénaire au cours de cette période. Cependant, ce comportement diffère de celui observé en Himalaya, Patagonie ou encore en Nouvelle Zélande. Les auteurs montrent que les variations, au cours de l’Holocène, de la circulation océanique de retournement en Atlantique (nommée AMOC) pourraient largement expliquer cette différence.

PNG - 720.6 ko

Glaciers

Les glaciers en Bolivie (haut) et dans le N-E du Groenland (bas) ont connu la même évolution plurimillénaire au cours de l’Holocène : une avancée majeure autour de 11 000 ans, un retrait au milieu de l’Holocène, et une nouvelle avancée depuis 3000 ans.

Crédit : Vincent Jomelli / CEREGE

L’étude montre que les glaciers andins et leurs cousins du bassin nord atlantique étaient en crue lorsque l’intensité de la circulation océanique nord atlantique était faible, associée à des températures froides dans l’hémisphère nord et à de fortes chutes de neige dans la partie sud des tropiques au début de l’Holocène. L’intensité de l’AMOC s’est accentuée jusqu’au milieu de l’Holocène, provoquant un recul important de ces glaciers, pour à nouveau s’affaiblir au cours des derniers 3000 ans, favorisant à nouveau une phase de crue glaciaire. Les glaciers des autres régions du monde ont, quant à eux, connu une autre évolution.

Au cours des derniers 60 ans, bien que la circulation océanique semble être en train de ralentir, créant des conditions propices à la croissance des glaciers situés à proximité de l’océan atlantique nord et dans les Andes, les glaciers reculent ici comme ailleurs. Ceci est dû à l’impact des gaz à effet de serre d’origine anthropique qui supplante les effets de l’AMOC.

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Terre Balisé avec :Communiqué de presse, Résultat scientifique

Réconcilier l’histoire des vents et des pluies de la mousson au Miocène

19 avril 2022 by osuadmin

La mousson d’été est un phénomène climatique majeur en Asie du Sud, dont les origines et l’évolution passée restent débattues. Elle s’exprime aujourd’hui par de fortes pluies sur le continent pendant l’été, associées à des vents intenses qui remontent le long des côtes Est-africaines et génèrent des remontées d’eau froides dans l’océan côtier (upwelling) qui favorisent la production biologique. L’évolution de cette production biologique au cours du temps, déduite à partir de l’analyse de carottes sédimentaires prélevées du fond des océans, est utilisée pour comprendre l’évolution des vents de la mousson passée. Les informations issues des carottes indiquent la mise en place des vents de la mousson moderne y a environ 13 millions d’années. Toutefois, les enregistrements continentaux indiquent l’existence de pluies saisonnières et intenses, typiques de la mousson en Asie du Sud, depuis au moins 40 millions d’années.

A l’aide du modèle de Système-Terre français IPSL-CM5A2 et du modèle de biogéochimie océanique PISCES, récemment adaptés pour l’étude des paléoclimats, un panel de simulations numériques a permis d’évaluer le lien entre l’évolution des vents et des pluies de mousson, des upwelling et de la géographie au cours du Miocène (entre -23 et -5 millions d’années). Les résultats obtenus montrent que la chronologie de l’évolution des vents et des précipitations est contrôlée par l’histoire géologique de différents reliefs autour de l’océan Indien, et suggèrent que les chronologies discordantes enregistrées dans l’océan et sur les continents traduisent la mise en place en deux temps du système de mousson moderne. Ainsi, les pluies intenses et saisonnières qui existent depuis au moins 40 millions d’années sont modulées par la formation du relief dans la région himalayenne. La distribution actuelle des vents et les upwelling se mettent en place vers 13 millions d’années, en réponse à la formation de relief à l’Est de l’Afrique et dans la région de l’Iran, et à la fermeture du passage maritime reliant l’océan Indien à la mer Méditerranée (passage de la Tethys).

Simulations

Voir en ligne : L’actualité sur le site de l’INSU

Classé sous :Atmosphère, Océan, Terre Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Pages provisoires omises …
  • Page 18
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter