• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Résultat scientifique

Grâce à Rosetta, la comète 67P/Churyumov–Gerasimenko continue de livrer ses secrets

13 octobre 2015 by osuadmin

Plusieurs équipes de chercheurs français du LATMOS 1, LPC2E 2, CRPG 3, LAM 4, IRAP 5 impliqués dans l’analyse des observations effectuées par les instruments embarqués à bord de la sonde Rosetta (ESA) nous révèlent l’absence de lien pour certains éléments chimiques entre notre Terre et les atmosphères cométaires. Dans le même temps, des chercheurs de l’Observatoire de la Côte d’Azur ont montré que l’activité précoce de la comète est dûe aux fortes variations de temperature engendrées par les processus d’ombrage de la surface topographique. Ces travaux sont parus dans les revues Science et The Astrophysical Journal Letters, 810 :L22

Froids et inactifs loin du soleil, les noyaux cométaires glacés se vaporisent à l’approche du système solaire interne, libérant sous l’effet des radiations solaires un flux de gaz et de poussières. La chevelure et la queue de la comète ainsi formées, la coma, les différencient alors des autres petits corps inactifs du système solaire : les astéroïdes.

  • L’eau, le carbone, l’azote terrestre ne seraient pas d’origine cométaire

L’instrument ROSINA développé par une équipe internationale sous la coordination de Kathrin Altwegg (Université de Berne, Suisse) et embarqué à bord de la sonde ROSETTA, analyse ainsi la composition des gaz de la comète 67P/Churyumov-Gerasimenko par spectrométrie de masse. Cet instrument permet l’analyse élémentaire et isotopique de ces gaz.

Les résultats montrent que la glace cométaire est riche en deutérium, avec un rapport Deutérium/Hydrogène trois fois supérieur à la valeur des océans terrestres, ce qui interdit une filiation directe entre ce type de comète et l’eau terrestre 6.

Par ailleurs, pour la première fois un gaz rare, l’argon a été détecté dans une coma cométaire, et ce, en grande quantité 7. Les gaz rares sont importants en tant que traceurs de l’origine et de l’évolution des atmosphères des planètes internes (Vénus la Terre et Mars). Cette mesure d’argon confirme pleinement que les élements majeurs qui forment l’atmosphère terrestre et les océans (l’eau, le carbone, et l’azote) ne peuvent provenir de comètes de type 67P, et auraient été apportés par des astéroïdes riches en volatils. Par contre, elles suggèrent qu’une fraction importante des gaz rares sont d’origine cométaire (Marty et al., soumis).

Cet instrument a également mesuré en continu la composition de la coma (H2O, CO2, CO, N2…) 8 et a montré son hétérogénéité chimique. Ces mesures permettent de mieux connaître les conditions de formation de la glace cométaire, dont sa température (autour de 30-40 K) 9.

  • L’activité de la comète trahie par son ombre…
Comparaison entre la carte de variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014 et une image de 67P prise le 2 septembre 2014
Crédit : ESA/Rosetta/Navcam/Bob King

Voir la modélisation :

https://osupytheas.fr/ressources/wp-content/uploads/sites/2/2015/10/Variation-temperature-67P-1.mp4

Variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014

L’imageur NAVCAM a révélé de façon inattendue que l’activité précoce de 67P, matérialisée par des jets de gaz et de poussières et encore mal comprise, se produisait principalement dans la zone concave du cou, entre les 2 lobes principaux (cf. Fig). Or, cette région est la moins exposée au Soleil et devrait être en moyenne plus froide, et donc moins propice à la sublimation de la glace que les autres régions de la comète.

Pour comprendre ce paradoxe les chercheurs de l’Observatoire de la Côte d’Azur 10 ont utilisé un modèle thermophysique prenant en compte la conductivité thermique et la topographie complexe de la comète pour calculer une carte de température de sa surface au cours de ses rotations. Ce modèle leur a permis de mettre en évidence que la région du cou présentait entre août et Décembre 2014 les variations de température les plus rapides en réponse au processus d’ombrage par les terrains environnants. Une nouvelle relation de cause à effet est donc mise au jour entre ces variations thermiques de surface et l’activité précoce de la comète.

Il a déjà été observé que des variations rapides de température peuvent induire de la fracturation à la surface des petits corps du système solaire (Delbo et al. 2014). Les auteurs proposent dans cet article que le taux d’érosion de la surface de la comète, lié à cette fracturation thermique, soit plus élevé dans le cou qu’ailleurs. Cette fracturation du matériau de surface permet la pénétration des radiations solaires plus en profondeur. Ceci expliquerait pourquoi la région du cou révèle à l’analyse plus de glace que les autres régions et pourquoi elle est la principale source de gaz de la comète (cf. Fig). Plus généralement, ces résultats suggèrent que la fracturation par effet thermique (formation du régolite) doit être beaucoup plus rapide à la surface des corps sans atmosphère présentant des concavités importantes (formation d’ombre) que ne le prévoit les estimations actuellement disponibles.

1. LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune, F-94100 Saint-Maur, France.
2. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS – Université d’Orléans, France.
3. Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France.
4. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France.
5. Université de Toulouse–UPS-OMP–IRAP, Toulouse, France. 6CNRS–IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France.
6. Altwegg, K et al. 2015. 67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio. Science 347 : 1261952–1.
7. Balsiger, H. et al. 2015. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko Science Advances 2015, 1500377 (online)
8. Hässig, M. et al. 2015. Time Variability and Heterogeneity in the Coma of 67P/Churyumov-Gerasimenko. Science 347 : aaa0276–1.
9. Rubin, M. et al. 2015. Molecular Nitrogen in Comet 67P/Churyumov-Gerasimenko Indicates a Low Formation Temperature. Science : 1–4. aaa6100.
10. Alí-Lagoa V., Delbo M., Libourel G. (2015) Rapid temperature changes and the early activity on comet 67P/CHURYUMOV-GERASIMENKO. The Astrophysical Journal Letters, 810 :L22

Classé sous :Atmosphère, Univers Balisé avec :Communiqué de presse, Résultat scientifique

L’océan au cœur de l’évolution des glaciers de montagne depuis 11 000 ans

15 avril 2022 by osuadmin

Aujourd’hui, les glaciers de montagnes reculent dans presque toutes les régions du monde, mais comment ont-ils évolué autrefois ? Une équipe de recherche internationale a analysé l’évolution plurimillénaire de plus de 80 glaciers dans différentes régions du monde au cours de l’Holocène (les 11 000 dernières années). Elle a découvert que les glaciers tropicaux andins, alpins, nord-américains et groenlandais ont eu une même évolution à l’échelle millénaire au cours de cette période. Cependant, ce comportement diffère de celui observé en Himalaya, Patagonie ou encore en Nouvelle Zélande. Les auteurs montrent que les variations, au cours de l’Holocène, de la circulation océanique de retournement en Atlantique (nommée AMOC) pourraient largement expliquer cette différence.

PNG - 720.6 ko

Glaciers

Les glaciers en Bolivie (haut) et dans le N-E du Groenland (bas) ont connu la même évolution plurimillénaire au cours de l’Holocène : une avancée majeure autour de 11 000 ans, un retrait au milieu de l’Holocène, et une nouvelle avancée depuis 3000 ans.

Crédit : Vincent Jomelli / CEREGE

L’étude montre que les glaciers andins et leurs cousins du bassin nord atlantique étaient en crue lorsque l’intensité de la circulation océanique nord atlantique était faible, associée à des températures froides dans l’hémisphère nord et à de fortes chutes de neige dans la partie sud des tropiques au début de l’Holocène. L’intensité de l’AMOC s’est accentuée jusqu’au milieu de l’Holocène, provoquant un recul important de ces glaciers, pour à nouveau s’affaiblir au cours des derniers 3000 ans, favorisant à nouveau une phase de crue glaciaire. Les glaciers des autres régions du monde ont, quant à eux, connu une autre évolution.

Au cours des derniers 60 ans, bien que la circulation océanique semble être en train de ralentir, créant des conditions propices à la croissance des glaciers situés à proximité de l’océan atlantique nord et dans les Andes, les glaciers reculent ici comme ailleurs. Ceci est dû à l’impact des gaz à effet de serre d’origine anthropique qui supplante les effets de l’AMOC.

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Terre Balisé avec :Communiqué de presse, Résultat scientifique

Réconcilier l’histoire des vents et des pluies de la mousson au Miocène

19 avril 2022 by osuadmin

La mousson d’été est un phénomène climatique majeur en Asie du Sud, dont les origines et l’évolution passée restent débattues. Elle s’exprime aujourd’hui par de fortes pluies sur le continent pendant l’été, associées à des vents intenses qui remontent le long des côtes Est-africaines et génèrent des remontées d’eau froides dans l’océan côtier (upwelling) qui favorisent la production biologique. L’évolution de cette production biologique au cours du temps, déduite à partir de l’analyse de carottes sédimentaires prélevées du fond des océans, est utilisée pour comprendre l’évolution des vents de la mousson passée. Les informations issues des carottes indiquent la mise en place des vents de la mousson moderne y a environ 13 millions d’années. Toutefois, les enregistrements continentaux indiquent l’existence de pluies saisonnières et intenses, typiques de la mousson en Asie du Sud, depuis au moins 40 millions d’années.

A l’aide du modèle de Système-Terre français IPSL-CM5A2 et du modèle de biogéochimie océanique PISCES, récemment adaptés pour l’étude des paléoclimats, un panel de simulations numériques a permis d’évaluer le lien entre l’évolution des vents et des pluies de mousson, des upwelling et de la géographie au cours du Miocène (entre -23 et -5 millions d’années). Les résultats obtenus montrent que la chronologie de l’évolution des vents et des précipitations est contrôlée par l’histoire géologique de différents reliefs autour de l’océan Indien, et suggèrent que les chronologies discordantes enregistrées dans l’océan et sur les continents traduisent la mise en place en deux temps du système de mousson moderne. Ainsi, les pluies intenses et saisonnières qui existent depuis au moins 40 millions d’années sont modulées par la formation du relief dans la région himalayenne. La distribution actuelle des vents et les upwelling se mettent en place vers 13 millions d’années, en réponse à la formation de relief à l’Est de l’Afrique et dans la région de l’Iran, et à la fermeture du passage maritime reliant l’océan Indien à la mer Méditerranée (passage de la Tethys).

Simulations

Voir en ligne : L’actualité sur le site de l’INSU

Classé sous :Atmosphère, Océan, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Découverte de mystérieuses ondulations au travers d’un disque de poussière, des structures inédites repérées autour d’une étoile proche

7 octobre 2015 by osuadmin

En analysant des images acquises par le Très Grand Télescope de l’ESO ainsi que le Télescope Spatial Hubble NASA/ESA, les astronomes ont découvert l’existence, au sein d’un disque de poussière situé autour d’une étoile proche, de structures inconnues jusqu’alors. Semblables à des ondes animées d’un mouvement rapide, ces structures figurent dans le disque de l’étoile AU Microscopii. Elles ne ressemblent en rien à ce qui a pu être observé ou envisagé jusqu’à présent. L’origine ainsi que la nature de ces structures offrent donc aux astronomes un tout nouveau champ d’investigations. Les résultats de leurs observations font l’objet d’une publication au sein de l’édition du 8 octobre 2015 de la revue Nature.

AU Microscopii, abréviée AU Mic, est une étoile jeune, proche de notre système solaire et entourée d’un disque de poussière étendu 1. L’étude de semblables disques de débris est susceptible de compléter notre connaissance des processus de formation planétaire à partir de telles structures.

Les astronomes ont recherché le moindre signe de structure déformée ou grumeleuse – témoignant de la possible existence de planètes – dans le disque de AU Mic. A cette fin, ils ont utilisé, en 2014, l’instrument SPHERE nouvellement installé sur le Très Grand Télescope de l’ESO. Aidés de ce puissant dispositif capable de discerner le moindre détail contrasté, ils ont fait une étrange découverte.

“Nos observations ont révélé quelque chose d’inattendu”, rapporte Anthony Boccaletti, chercheur CNRS au LESIA (Observatoire de Paris/CNRS/UPMC/Paris-Diderot), France, premier auteur de l’article. “Les images acquises par SPHERE laissent apparaître un ensemble de structures inexpliquées au sein du disque. Ces structures arborent une forme arquée, ou ondulée, bien différente de ce qui a déjà été observé par le passé.”

Sur les nouvelles images figurent, telles des vagues à la surface de l’eau, cinq arches formant globalement une structure ondulante à différentes distances de l’étoile. Après avoir repéré ces structures au moyen des données de SPHERE, l’équipe a consulté d’anciennes images du disque acquises, en 2010 et 2011, par le Télescope Spatial Hubble NASA/ESA 2. Il est ainsi apparu, non seulement que ces structures figuraient sur les images d’Hubble, mais également qu’elles avaient changé au fil du temps. En fait, ces ondulations se déplacent – et à une vitesse très élevée !

Les structures les plus éloignées de l’étoile semblent se mouvoir à vitesse plus élevée que les plus proches. Trois des structures au moins se déplacent si rapidement qu’elles pourraient bien échapper à l’attraction gravitationnelle de l’étoile. L’existence de vitesses si élevées exclut l’hypothèse selon laquelle ces structures résulteraient de perturbations causées sur le disque par des objets – telles des planètes – en orbite autour de l’étoile. Un élément inconnu, et véritablement inhabituel, doit être à l’origine de l’accélération de ces ondulations et de leur vitesse si élevée.

L’équipe ne peut affirmer avec certitude la cause de ces mystérieuses ondulations autour de l’étoile. Elle a toutefois envisagé et écarté un ensemble de phénomènes possibles, telle la collision de deux objets massifs et rares semblables à des astéroïdes libérant d’importantes quantités de poussière, ou bien encore des ondes spirales générées par des instabilités gravitationnelles à l’intérieur du système.

Mais l’hypothèse la plus prometteuse reste celle d’une interaction entre une flambée de cette étoile jeune et active avec une possible exoplanète dans le système. « Notre analyse n’a pas révélé de planète géante dans le système, mais nous avons d’ores et déjà de nouvelles observations prévues pour regarder encore plus proche de l’étoile et tenter d’éclaircir l’origine de ces mystérieuses structures » commente Arthur Vigan, astronome du Laboratoire d’Astrophysique de Marseille (LAM) qui a participé à l’analyse des données.

Cette découverte faite avec la caméra IRDIS de SPHERE est une victoire pour l’équipe d’ingénieurs et d’astronomes du LAM qui a conçu cette caméra, ainsi que d’autres éléments clés de l’instrument SPHERE. « La qualité des optiques d’IRDIS est sans précédent » précise Kjetil Dohlen, l’ingénieur système de SPHERE et IRDIS. « C’est cette qualité qui permet aujourd’hui de visualiser avec autant de précision ces si fines structures. C’est le travail de toute une équipe sur plusieurs années qui a permis d’en arriver là ».

“ SPHERE n’est que dans sa première année de fonctionnement et il est déjà capable d’étudier un tel disque. On ne peut donc que se réjouir de ce résultat des plus prometteurs qui confirme les grandes capacités de l’instrument”, conclut Jean-Luc Beuzit, co-auteur de la nouvelle étude et responsable du consortium international qui a conçu l’instrument SPHERE.

L’équipe ambitionne de continuer à observer le système AU Mic au moyen de SPHERE et d’autres instruments parmi lesquels ALMA, afin de comprendre les processus à l’œuvre. Pour l’instant toutefois, ces étranges structures demeurent un véritable mystère.

1. AU Microscopii se situe à 32 années-lumière de la Terre seulement. Le disque est essentiellement constitué d’astéroïdes que les violentes collisions ont réduits à l’état de poussière.
2. Les données ont été acquises par le Spectrographe Imageur du Télescope Spatial Hubble (STIS).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Planètes : les « Jupiters chauds » se seraient formés très rapidement

9 septembre 2015 by osuadmin

Vingt ans après leur découverte, les « Jupiters chauds », ces planètes géantes gazeuses tournant de façon très rapprochée autour de leur étoile, restent encore des objets énigmatiques. En utilisant le spectro-polarimètre ESPaDOnS du Télescope Canada-FranceHawaii, une équipe internationale d’astrophysiciens menée par Jean-François Donati (CNRS) et à laquelle participe des chercheurs du Laboratoire d’Astrophysique de Marseille – LAM (AMU/CNRS) vient de montrer que ces corps pourraient ne mettre que quelques millions d’années à se rapprocher de leur étoile tout juste formée. Cette découverte devrait nous aider à mieux comprendre comment les systèmes planétaires, similaires ou différents de notre système solaire, se forment et évoluent au cours de leur existence. Elle est publiée le 9 septembre 2015 dans Monthly Notices of the Royal Astronomical Society (MNRAS) et en accès libre sur le site ArXiv.

Dans le système solaire, les planètes rocheuses, comme la Terre et Mars, occupent les régions proches du Soleil, alors que les planètes géantes et gazeuses, comme Jupiter ou Saturne, sont plus éloignées. D’où la surprise de Michel Mayor et Didier Queloz lorsqu’ils découvrent, il y a exactement vingt ans, la toute première exoplanète : celle-ci est en effet une planète géante gazeuse similaire à Jupiter, mais tournant autour de son étoile vingt fois plus près que la Terre autour du Soleil.

Depuis, les astronomes ont montré que ces futurs « Jupiters chauds » se forment en périphérie du disque protoplanétaire, le nuage qui donne naissance à l’étoile centrale et aux planètes environnantes, avant de migrer à l’intérieur. C’est lorsqu’elles se rapprochent ensuite au plus près de leur étoile que ces planètes géantes gazeuses se réchauffent et deviennent des Jupiters chauds – au contraire de notre Jupiter, planète géante « froide », environ 5 fois plus éloignée du Soleil que la Terre. Mais quand ces Jupiter chauds se rapprochent-ils de leur étoile ? Les astronomes imaginaient jusqu’ici deux théories possibles : ce processus peut se produire dans une phase très précoce, alors que les jeunes planètes s’alimentent encore au sein du disque originel, ou bien plus tardivement, une fois que de nombreuses planètes ont été formées et interagissent en une chorégraphie si instable que certaines d’entre elles se retrouvent propulsées au voisinage immédiat de l’étoile centrale.

Une équipe internationale d’astrophysiciens, comprenant plusieurs chercheurs français et menée par Jean-François Donati, de l’Institut de recherche en astrophysique et planétologie (IRAP, CNRS/Université Toulouse III-Paul Sabatier) 1, viendrait de montrer que le premier scénario était une réalité. Avec ESPaDOnS, le spectropolarimètre construit par les équipes de l’IRAP pour le télescope Canada-France-Hawaï (CFHT 2 ), ils ont observé des étoiles en formation au sein d’une pouponnière stellaire située à environ 450 années-lumière de la Terre, dans la constellation du Taureau. L’une d’elles, V830 Tau, montre des signatures similaires à celles causées par une planète 1.4 fois plus massive que Jupiter, mais sur une orbite 15 fois plus proche de l’étoile que la Terre ne l’est du Soleil. Cette découverte suggère que les Jupiters chauds peuvent être extrêmement jeunes et potentiellement bien plus fréquents autour des étoiles en formation qu’au voisinage d’étoiles adultes comme le Soleil.

Formation des étoiles et des planètes au sein de la pouponnière stellaire de la constellation du Taureau, telle que révélée par le télescope APEX au Chili.
Crédit : ESO / APEX
Vue d’artiste d’une planète géante en formation dans le disque d’une étoile jeune.
Crédit : NASA / JPL

Les étoiles jeunes abritent des trésors d’information sur la formation des planètes. Leur activité et leur champ magnétique très intenses les couvrent de taches des centaines de fois plus grosses que celles du Soleil. Elles engendrent donc dans leur spectre des perturbations d’amplitude bien plus importantes que celles causées par des planètes qui deviennent du coup beaucoup plus difficiles à détecter, même dans le cas des Jupiters chauds. Pour aborder ce problème, l’équipe a entrepris le programme d’observation MaTYSSE 3 dans le but de cartographier la surface de ces étoiles et de détecter d’éventuels Jupiters chauds.

En suivant ces étoiles au cours de leur rotation et par le biais de techniques tomographiques inspirées de l’imagerie médicale, il est possible de reconstruire la distribution des taches sombres et brillantes, ainsi que la topologie du champ magnétique, à la surface des étoiles jeunes. Cette modélisation rend également possible la correction des effets perturbateurs de l’activité et la détection d’éventuels Jupiters chauds. Dans le cas de V830 Tau, les auteurs sont parvenus à découvrir, grâce à cette nouvelle technique, un signal enfoui suggérant la présence d’une planète géante. Même si de nouvelles données sont nécessaires pour valider la détection, ce premier résultat prometteur démontre clairement que la méthode proposée peut nous fournir les clés de l’énigme de la formation des Jupiters chauds.

SPIRou, le nouvel instrument que les équipes de l’IRAP construisent en ce moment pour le TCFH et dont la première lumière est prévue pour 2017, permettra de repousser encore les limites de la méthode, grâce à sa capacité à observer dans l’infrarouge – domaine dans lequel les étoiles jeunes sont beaucoup plus brillantes. Grâce à lui, la formation des étoiles et des planètes pourra être explorée encore plus finement.

1. L’IRAP appartient à l’Observatoire Midi-Pyrénées (OMP).
2. Le CFHT (cfht.hawaii.edu) est une organisation appartenant conjointement : au Conseil National de Recherches du Canada, au Centre National de la Recherche Scientifique (France) et à l’Université d’Hawaii (USA).
3. MaTYSSE, « Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets »

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Andes : un paléolac géant au pays des glaciers

15 juillet 2015 by osuadmin

Au pied de la cordillère des Andes, un gigantesque lac, le lac Tauca, a recouvert l’Altiplano bolivien pendant la dernière déglaciation. Grâce à une méthode originale développée à partir de micro-algues fossiles, les diatomées, une équipes de chercheurs de l’IRD, du CNRS et d’Aix-Marseille Université à laquelle participent des chercheurs du CEREGE (OSU Pythéas) vient de montrer le rôle sur le climat régional de la disparition il y a 14 000 ans de ce géant d’eau salé, perché à quelque 3 500 m d’altitude. Son assèchement a par ailleurs donné naissance à la croûte de sel la plus grande du monde (11 000 km2) qui recouvre aujourd’hui le célèbre salar d’Uyuni.

  • La dernière déglaciation dans les Andes boliviennes

Des chercheurs de l’IRD et leurs partenaires du CNRS et d’Aix-Marseille Université viennent de montrer l’influence régionale du paléolac Tauca, qui occupait l’Altiplano bolivien à l’époque de la dernière déglaciation. Ce gigantesque lac a connu une phase d’extension maximale qui a débuté il y a 16 000 ans. Puis, il s’est asséché progressivement pour disparaître près de 2 000 ans plus tard. Pour étudier la possible influence du lac sur le climat de la région, les scientifiques ont reconstitué sa composition isotopique. Pour cela, ils ont mis en œuvre une méthode originale utilisant des micro-algues fossiles, les diatomées.

 

  • Des micro-algues témoins des conditions d’humidité

La quantité d’isotopes lourds de l’oxygène (δ18O) contenue dans ces fossiles retrace les conditions géochimiques des eaux du lac dans lesquelles ces algues se sont développées. Cette composition isotopique fournit aux scientifiques un indicateur précis des températures et des conditions d’humidité dans la région à l’époque où ces algues vivaient. Lorsque la pluie augmente et que le niveau du lac s’élève, le rapport isotopique de l’oxygène des eaux baisse et inversement lorsque les précipitations diminuent.

 

  • Une influence climatique régionale

Les chercheurs ont alors mis en regard l’évolution de la composition isotopique du lac qu’ils ont reconstituée avec un autre signal isotopique, enregistré dans une carotte de glace forée au sommet du mont Sajama, surplombant l’ancien emplacement du Tauca. Cette carotte de glace a révélé, vers – 14 500 ans, un pic de δ18O exceptionnel comparé aux autres enregistrements dans les glaces dans la région andine. En revanche, ce pic est cohérent avec les mesures effectuées sur les fossiles de diatomées contenus dans les sédiments de l’ancien lac. Cette étude met donc en évidence que les neiges prélevées au Sajama se seraient formées à cette période à partir du mélange entre l’humidité présente dans l’atmosphère et celle apportée par l’évaporation du lac.

Ce résultat suggère que dans des cas très spécifiques comme celui-ci, avec la présence d’une étendue lacustre à proximité, un enregistrement paléoclimatique comme celui des précipitations dans les carottes de glaces peut être biaisé par le cycle hydrologique local. Son interprétation doit tenir compte de cette influence.

L’ancien méga-lac Tauca a donné naissance au célèbre Salar d’Uyuni et sa croûte de sel Crédit : IRD / Denis Wirrmann

 

Classé sous :Paléontologie Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Pages provisoires omises …
  • Page 19
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Des mesures interférométriques inédites pour comprendre la formation de β Pictoris b
  • Prix départemental pour la recherche en Provence 2025
  • L’ESO signe l’accord pour l’instrument MOSAIC sur l’ELT
  • Les Hackathons des Calanques
  • Première observation de la stratification moléculaire dans le disque « Flying Saucer »

Commentaires récents

Aucun commentaire à afficher.

Archives

  • décembre 2025
  • novembre 2025
  • octobre 2025
  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter