• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Archives pour septembre 2014

Le changement climatique pourrait favoriser le développement du plancton de petite taille en Méditerranée Nord-Occidentale

22 septembre 2014 by osuadmin

Une équipe constituée de chercheurs du Laboratoire d’études en géophysique et océanographie spatiales (LEGOS/OMP, UPS / CNRS / CNES / IRD), du Laboratoire d’aérologie (LA/OMP, UPS / CNRS), de l’Institut méditerranéen d’océanographie (MIO/PYTHÉAS, CNRS / Université du Sud – Toulon – Var / IRD / Université Aix-Marseille) et du Groupe d’étude de l’atmosphère météorologique (CNRM-GAME, Météo-France / CNRS) a examiné, par modélisation à l’aide d’un modèle couplé hydrodynamique – biogéochimie, la réponse de l’écosystème planctonique de Méditerranée Nord-Occidentale à l’évolution des conditions atmosphériques et hydrodynamiques d’ici la fin du XXIe siècle. La contribution de cet écosystème au stockage du carbone ne montrerait pas de changement significatif. En revanche, le réchauffement et l’appauvrissement en sels nutritifs de la couche de surface favoriseraient le développement du plancton de petite taille. Il ressort également que le choix des conditions biogéochimiques initiales et aux frontières imposées au modèle couplé induit de fortes incertitudes.

La Méditerranée a été identifiée comme l’un des « points chauds » du changement climatique car compte tenu de sa petite taille, les impacts des variations climatiques sur la circulation océanique et les écosystèmes marins se ressentent rapidement sur l’ensemble du bassin. En Méditerranée Nord-Occidentale, l’une des zones biologiquement les plus productives de Méditerranée, la convection profonde est l’un des mécanismes hydrodynamiques clefs :

  • en hiver, les épisodes de vent du nord (Mistral et Tramontane) y provoquent un refroidissement, et donc une densification, des eaux de surface, induisant un fort mélange vertical de la colonne d’eau qui permet d’apporter à la surface les sels nutritifs initialement présents dans les couches profondes de l’océan ;
  • au printemps, le mélange cesse et la chlorophylle peut de nouveau se développer par photosynthèse dans la couche de surface enrichie en nutritifs et stabilisée ; c’est le « bloom » phytoplanctonique.

Or la plupart des études de modélisation prévoient un affaiblissement du mélange vertical hivernal et un réchauffement de la couche de surface d’ici la fin du XXIe siècle en Méditerranée. Quel impact cette évolution aura-t-elle sur l’écosystème planctonique ? Cette question est importante car le plancton joue un rôle majeur dans la biodiversité et les ressources halieutiques locales, en tant que premier maillon de la chaine alimentaire marine, ainsi que dans le climat global via sa contribution à la séquestration océanique du carbone.

Cycle annuel de la concentration en carbone (mmolC.m-3) des groupes planctoniques de petite taille (pico-phytoplancton, nano-zooplancton et bactéries) et du carbone organique dissous (COD). L’enveloppe bleue (rouge) représente le groupe des 7 années de la période 1961-1990 (respectivement 2070-2099). Le cadre au-dessus des courbes donne la valeur de la p-value : si celle-ci est inférieure à 0,05 (zones grisées), la différence entre les périodes future et présente est significative. Pour comprendre la réponse de l’écosystème planctonique de Méditerranée Nord-Occidentale aux variabilités atmosphérique et hydrodynamique à plus ou moins long terme, des chercheurs du LEGOS, du LA, du MIO et du GAME ont réalisé deux jeux de sept simulations annuelles représentatives respectivement des périodes 1961-1990 et 2070-2099 au moyen d’un modèle numérique couplé hydrodynamique (SYMPHONIE) – biogéochimie (Eco3M).

De ces simulations, il ressort que l’affaiblissement du mélange vertical entre le XXe et la fin du XXIe siècle conduirait à une diminution de la disponibilité en sels nutritifs et qu’en parallèle, le réchauffement de la couche de surface provoquerait une augmentation de la production primaire brute (qui dépend de la température), c’est-à-dire de la fixation de carbone par photosynthèse chlorophyllienne. Cette combinaison de l’appauvrissement nutritif et de l’augmentation de la production primaire donnerait lieu à une augmentation de l’exsudation phytoplanctonique, un processus permettant aux organismes phytoplanctoniques de se « débarrasser » de leur trop-plein de carbone, par rapport aux autres éléments chimiques (azote, phosphore, silicium), sous forme de carbone organique dissous (COD) (perte de biomasse). La forte augmentation de concentration en COD qui en découlerait favoriserait alors le développement de bactéries 1 consommatrices de COD et productrices d’ammonium, et conduirait ainsi à une augmentation de la biomasse du pico-phytoplancton (le plus petit groupe de phytoplancton qui consomme préférentiellement de l’ammonium) et du nano-zooplancton (le plus petit groupe de zooplancton qui consomme bactéries et pico-phytoplancton). Au final, seuls les groupes planctoniques de petite taille (pico-phytoplancton, nano-zooplancton et bactéries) subiraient une augmentation significative de leur biomasse entre le XXe et la fin du XXIe siècle, une évolution qui induirait une modification de la composition de l’écosystème planctonique mais pas d’augmentation de la biomasse globale, la biomasse des groupes de petite taille ne représentant qu’une faible fraction de la biomasse totale. En outre, la contribution de cet écosystème au cycle du carbone ne subirait pas de changement significatif entre les périodes présente et future. En effet, les simulations montrent :

  • que l’augmentation du rejet de dioxyde de carbone, en grande partie lié à la respiration bactérienne, compense presque exactement celle de la fixation liée à la production primaire, et que donc la fixation nette de dioxyde de carbone par l’écosystème reste inchangée ;
  • que l’affaiblissement du transport vertical des masses d’eau est compensé par l’augmentation de leur concentration en COD, et que donc l’export en profondeur de carbone organique ne varie pas de façon significative.

Les chercheurs ont également effectué des exercices de sensibilité pour évaluer l’influence des différentes sources d’incertitudes associées à la stratégie de modélisation mise en œuvre. Les incertitudes associées au choix des conditions biogéochimiques initiales et aux frontières sont très élevées : elles peuvent atteindre 70 % et sont donc du même ordre ou d’un ordre de grandeur supérieur à celles associées à la variabilité interannuelle et à l’évolution à long terme de l’écosystème. Quant aux incertitudes liées au choix du forçage atmosphérique de surface [flux de chaleur, d’eau (évaporation et précipitation) et de quantité de mouvement (vent)], du forçage hydrologique et du scénario socio-économique, elles restent inférieures à 7 %, tandis que celle liée au forçage hydrodynamique peut aller jusqu’à 30 %, les évolutions simulées entre présent et futur allant toujours dans le même sens quel que soit le forçage considéré.

1. Ces bactéries, qui font partie du groupe planctonique de petite taille, consomment une fraction importante de la matière organique dissoute. Inversement, elles rejettent des sels nutritifs inorganiques (ammonium, phosphates…) au cours d’un mécanisme dit d’excrétion, ainsi que du CO2 au cours de la respiration bactérienne. L’ensemble de ces processus est appelé boucle microbienne.

Classé sous :Atmosphère, Biodiversité, Écologie, Océan Balisé avec :Communiqué de presse

Inauguration des plateformes technologiques SPATIAL et POLARIS du Laboratoire d’astrophysique de Marseille (LAM)

19 septembre 2014 by osuadmin

Cet événement conclura l’opération du regroupement de l’astrophysique marseillaise sur le site de Château-Gombert et marquera le succès d’une opération d’ampleur exceptionnelle initiée il y plus de 10 ans.

Ces équipements lourds, uniques en France et sans véritable compétiteur en Europe, représentent un investissement de près de 7M€. Leur mise en service place le LAM au premier rang des laboratoires européens capables de réaliser, de tester et de qualifier les instruments pour les très grandes infrastructures de recherche en astrophysique au sol ou dans l’espace.

En présence de Yvon Berland, Président d’Aix-Marseille Université ; Pascale Delecluse, Directrice de l’Institut national des sciences de l’Univers du CNRS ; Jean-Yves le Gall, Président du Centre national d’études spatiales – CNES ; Younis Hermès, Délégué régional Provence et Corse du CNRS ; Jean-Gabriel Cuby, Directeur du LAM ; Philippe Mussi, Conseiller régional, Région Provence-Alpes-Côte d’Azur ; Félix Weygand, Conseiller général délégué à l’enseignement supérieur, recherche et nouvelles technologies et informatique ; Marie-Laure Rocca-Serra, Conseillère municipale déléguée à l’enseignement supérieur, Ville de Marseille ; Cyril Robin-Champigneul, Chef de la représentation régionale de la Commission européenne ; Mark McCaughrean, Senior Science Advisor in the Directorate of Science & Robotic Exploration à l’ESA (Agence spatiale européenne).

La plateforme SPATIAL est constituée d’un ensemble de moyens de tests et de qualification en environnement spatial d’une ampleur unique pour un laboratoire d’astrophysique en France. Ces équipements, constitués d’un grand caisson de 90m3 (ERIOS), de cuves spécialisées de plus petites dimensions, de moyens de tests d’éléments optiques et micro-optiques, et de moyens de vibration et de métrologie, serviront à la qualification des instruments de futures missions spatiales.

La plateforme POLARIS, (POLishing Active and Robotic Integrated System), est constituée d’un équipement majeur dédié au polissage de pièces optiques de grand diamètre accompagné d’un ensemble de moyens de fabrication optique de plus petites dimensions, des équipements de métrologie et de tests interférométriques ainsi qu’un tunnel et une tour de tests optiques permettant la caractérisation in-situ des grandes optiques réalisées.

Crédit Photo : Alain Origné / LAM

Classé sous :Univers Balisé avec :Communiqué de presse

Rosetta : sélection du site d’atterrissage pour Philae

16 septembre 2014 by osuadmin

Annonce publiée sur le site de l’INSU : Ce lundi 15 septembre, l’ESA a annoncé officiellement le choix du site sur lequel se posera l’atterrisseur Philae, sur la comète 67P/Churyumov–Gerasimenko. Le site choisi est le site « J » qui avait été présélectionné le 24 août dernier parmi un ensemble de 5 sites potentiels, lorsque la sonde se trouvait encore à 100 kilomètres de la comète. Le site « J » offre un très bon potentiel scientifique tout en assurant les meilleures conditions d’atterrissage possible pour Philae et la possibilité d’exploiter au mieux ses ressources en énergie.

Le site « J » se trouve sur la « tête » de la comète, objet de forme irrégulière qui mesure à peine plus de 4 km en son point le plus large. Le choix du site « J » comme site principal s’est fait à l’unanimité. Le site de secours, « C », est quant à lui sur le « corps » de la comète.

Site d’atterrissage de Philae
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

L’atterrisseur devrait atteindre la surface de la comète le 11 novembre ; il réalisera des mesures approfondies pour caractériser le noyau in situ, ce qui constituera une grande première.

Au cours du week-end, les équipes du CNES et du DLR, son homologue allemand, l’équipe responsable de Rosetta à l’ESA, ainsi que des chercheurs français particulièrement investis dans un grand nombre d’instruments de la mission 1,se sont retrouvés au CNES, à Toulouse, pour étudier les données disponibles et choisir le site principal et le site de secours.

Un certain nombre de points critiques ont été analysés, notamment la nécessité de trouver une trajectoire sûre pour déployer Philae à la surface de la comète, sur une zone où le nombre de dangers identifiés devait être minime. Après l’atterrissage, d’autres facteurs devaient être pris en compte, comme l’équilibre jour/nuit et la fréquence des liaisons de communication avec l’orbiteur.

Étant donné que la descente vers la comète est passive, le seul élément prévisible est le point d’atterrissage qui se situera dans une ellipse mesurant quelques centaines de mètres.

Vue des 5 sites présélectionnés le 24 Août
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Une zone de un kilomètre carré a été évaluée pour chaque site présélectionné. Sur le site « J », la majeure partie des pentes font moins de 30° par rapport à la verticale locale, ce qui limite les risques de voir l’atterrisseur se renverser lorsqu’il touchera la surface. Ce site est également peu rocailleux et reçoit suffisamment de lumière au quotidien pour que Philae puisse recharger ses batteries et poursuivre sa mission scientifique à la surface après la phase initiale pendant laquelle il est alimenté par une pile.

Une estimation préliminaire de la trajectoire vers le site « J » a montré que le temps de descente de Philae serait d’environ sept heures, durée qui ne compromettrait pas les observations in situ en consommant une trop grande quantité de l’énergie fournie par la pile.

Il n’est pas possible de prévoir l’activité de la comète entre maintenant et l’atterrissage, ni même le jour de l’atterrissage. Une brutale hausse de l’activité pourrait modifier la position de Rosetta sur son orbite au moment du déploiement et donc l’endroit exact où Philae atterrira. De plus, le site « J », comme les autres sites d’ailleurs, n’est pas lisse et plat et dans l’ellipse d’atterrissage de Philae, il y a des pentes fortement inclinées. Les risques sont donc réels, mais le site « J » rassemble néanmoins de grands avantages tant opérationels que scientifiques, en particulier il devrait satisfaire l’ensemble des expériences et instruments scientifiques de la mission.

Tous ces éléments combinés nous donnent la mesure du défi que se sont lancé il y a 20 ans l’ensemble des acteurs de cette formidable mission. 2

1. Les laboratoires CNRS impliqués dans Rosetta-Philae : LESIA (Observatoire de Paris/CNRS/Université Paris Diderot/UPMC) IPAG (CNRS/Université Joseph Fourier) IAS (CNRS/Université Paris Sud) LATMOS (CNRS/UPMC/UVSQ) LPC2E (CNRS/Université d’Orléans) IRAP (CNRS/Université Paul Sabatier - Toulouse III) LPP (École Polytechnique/CNRS/Université Paris Sud/UPMC) LAM (CNRS/Aix-Marseille Université) LERMA (Observatoire de Paris/CNRS/ENS/Université Cergy Pontoise/UPMC) LISA (CNRS/Université Paris Diderot/UPEC)
2. Les expériences auxquelles les laboratoires du CNRS contribuent : Orbiteur (9 instruments sur les 11) : ALICE, CONSERT, COSIMA, MIDAS, MIRO
, OSIRIS
, ROSINA
, RPC, VIRTIS. Atterrisseur (5 instruments sur les 10) : APXS, CIVA, CONSERT, COSAC et SESAME.

Classé sous :Univers Balisé avec :Communiqué de presse

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter