• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Archives pour octobre 2015

Les aimants : des pièges pour les requins bleus ?

22 octobre 2015 by osuadmin

Dans un souci de préservation des requins peau bleue, une espèce aujourd’hui presque menacée d’extinction, des chercheurs de l’Institut méditerranéen d’océanographie (MIO/OSU Institut Pythéas, CNRS / AMU / IRD / UTLN) et de l’Institut de recherche sur les phénomènes hors équilibre (IRPHE, AMU / CNRS / École Centrale Marseille) se sont intéressés à l’utilisation d’aimants pour limiter leur prise au cours de la pêche à la palangre. Hélas ! Il s’avère que ces aimants attirent les requins peau bleue plutôt qu’ils ne les repoussent.

Fortement exploité depuis plusieurs années par rapport à son abondance dans l’Atlantique Nord, le requin peau bleue (Prionace glauca) est une espèce presque menacée d’extinction (statut IUCN 2013). Il constitue en effet l’une des principales prises de la pêche à la palangre 1 que mènent les armateurs espagnols et portugais dans l’Atlantique Nord, même lorsqu’il n’est pas l’espèce ciblée par les pêcheurs qui préféreraient trouver sur leurs hameçons, pour des raisons de rentabilité, des espadons ou des thons.

Requin peau bleue capturé par la palangre de surface en Atlantique Nord-Est
Crédit : Sébastien Biton Porsmoguer

Les requins sont dotés d’un organe électro-sensoriel appelé ampoules de Lorenzini, constitué d’un système complexe de capteurs reliés à des récepteurs positionnés autour de leur museau et de leur tête et capables de détecter les ondes électromagnétiques. Du fait que tout être vivant émet un faible champ magnétique, les requins peuvent ainsi localiser leurs proies.

Des chercheurs ayant remarqué de manière fortuite en laboratoire que leur requin cherchait à fuir un aimant placé près de lui, des tests ont été réalisés avec différentes espèces de requins. Il s’avère que ce comportement vis-à-vis des aimants n’est pas le même pour toutes les espèces. Qu’en est-il pour le requin peau bleue ? Ce requin ne pouvant vivre en captivité, son comportement n’a jamais été testé. Se pourrait-il que les aimants fassent fuir ces requins et puissent ainsi être utilisés dans la pêche à la palangre pour en limiter la prise ?

Position de l’aimant sur l’hameçon
Crédit : Christophe Almarcha

C’est à cette question que des chercheurs du MIO et de l’IRPHE ont cherché à répondre en testant pendant 3 jours, dans des conditions réelles de pêche à la palangre, l’effet de deux modèles d’aimants en néodyme, à haute résistance dans le temps et à puissance magnétique élevée, mais de taille différente. Un hameçon sur deux a été équipé d’un aimant. La palangre a été divisée en trois zones qui ont été plongées dans l’eau successivement, de manière à pouvoir étudier trois durées d’immersion.

Ces tests ont permis de montrer que, quelle que soit la durée d’immersion des hameçons, les captures de requins peau bleue étaient plus élevées au niveau des hameçons munis d’aimants qu’au niveau des hameçons sans aimant, et d’autant plus élevées que l’aimant utilisé était plus grand et donc plus puissant. Ainsi, les aimants auraient un effet attractif sur les requins peau bleue et leur utilisation dans la pêche à la palangre ne pourrait que les piéger !

En outre, les mesures physiques réalisées durant cette étude ont révélé un aspect pratique important à prendre en compte : à leur sortie de l´usine de fabrication, les hameçons sont déjà légèrement aimantés et pourraient donc attirer le requin peau bleue, même en l’absence d’aimant !

1. La palangre de surface est une ligne-mère de 50-90 km de long sur laquelle sont fixées des lignes dotées à leur extrémité d´un hameçon et d´un appât, qui est plongée dans l’eau à une profondeur de 20 m environ.

Classé sous :Biodiversité, Biologie, Océan Balisé avec :Communiqué de presse

Grâce à Rosetta, la comète 67P/Churyumov–Gerasimenko continue de livrer ses secrets

13 octobre 2015 by osuadmin

Plusieurs équipes de chercheurs français du LATMOS 1, LPC2E 2, CRPG 3, LAM 4, IRAP 5 impliqués dans l’analyse des observations effectuées par les instruments embarqués à bord de la sonde Rosetta (ESA) nous révèlent l’absence de lien pour certains éléments chimiques entre notre Terre et les atmosphères cométaires. Dans le même temps, des chercheurs de l’Observatoire de la Côte d’Azur ont montré que l’activité précoce de la comète est dûe aux fortes variations de temperature engendrées par les processus d’ombrage de la surface topographique. Ces travaux sont parus dans les revues Science et The Astrophysical Journal Letters, 810 :L22

Froids et inactifs loin du soleil, les noyaux cométaires glacés se vaporisent à l’approche du système solaire interne, libérant sous l’effet des radiations solaires un flux de gaz et de poussières. La chevelure et la queue de la comète ainsi formées, la coma, les différencient alors des autres petits corps inactifs du système solaire : les astéroïdes.

  • L’eau, le carbone, l’azote terrestre ne seraient pas d’origine cométaire

L’instrument ROSINA développé par une équipe internationale sous la coordination de Kathrin Altwegg (Université de Berne, Suisse) et embarqué à bord de la sonde ROSETTA, analyse ainsi la composition des gaz de la comète 67P/Churyumov-Gerasimenko par spectrométrie de masse. Cet instrument permet l’analyse élémentaire et isotopique de ces gaz.

Les résultats montrent que la glace cométaire est riche en deutérium, avec un rapport Deutérium/Hydrogène trois fois supérieur à la valeur des océans terrestres, ce qui interdit une filiation directe entre ce type de comète et l’eau terrestre 6.

Par ailleurs, pour la première fois un gaz rare, l’argon a été détecté dans une coma cométaire, et ce, en grande quantité 7. Les gaz rares sont importants en tant que traceurs de l’origine et de l’évolution des atmosphères des planètes internes (Vénus la Terre et Mars). Cette mesure d’argon confirme pleinement que les élements majeurs qui forment l’atmosphère terrestre et les océans (l’eau, le carbone, et l’azote) ne peuvent provenir de comètes de type 67P, et auraient été apportés par des astéroïdes riches en volatils. Par contre, elles suggèrent qu’une fraction importante des gaz rares sont d’origine cométaire (Marty et al., soumis).

Cet instrument a également mesuré en continu la composition de la coma (H2O, CO2, CO, N2…) 8 et a montré son hétérogénéité chimique. Ces mesures permettent de mieux connaître les conditions de formation de la glace cométaire, dont sa température (autour de 30-40 K) 9.

  • L’activité de la comète trahie par son ombre…
Comparaison entre la carte de variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014 et une image de 67P prise le 2 septembre 2014
Crédit : ESA/Rosetta/Navcam/Bob King

Voir la modélisation :

https://osupytheas.fr/ressources/wp-content/uploads/sites/2/2015/10/Variation-temperature-67P-1.mp4

Variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014

L’imageur NAVCAM a révélé de façon inattendue que l’activité précoce de 67P, matérialisée par des jets de gaz et de poussières et encore mal comprise, se produisait principalement dans la zone concave du cou, entre les 2 lobes principaux (cf. Fig). Or, cette région est la moins exposée au Soleil et devrait être en moyenne plus froide, et donc moins propice à la sublimation de la glace que les autres régions de la comète.

Pour comprendre ce paradoxe les chercheurs de l’Observatoire de la Côte d’Azur 10 ont utilisé un modèle thermophysique prenant en compte la conductivité thermique et la topographie complexe de la comète pour calculer une carte de température de sa surface au cours de ses rotations. Ce modèle leur a permis de mettre en évidence que la région du cou présentait entre août et Décembre 2014 les variations de température les plus rapides en réponse au processus d’ombrage par les terrains environnants. Une nouvelle relation de cause à effet est donc mise au jour entre ces variations thermiques de surface et l’activité précoce de la comète.

Il a déjà été observé que des variations rapides de température peuvent induire de la fracturation à la surface des petits corps du système solaire (Delbo et al. 2014). Les auteurs proposent dans cet article que le taux d’érosion de la surface de la comète, lié à cette fracturation thermique, soit plus élevé dans le cou qu’ailleurs. Cette fracturation du matériau de surface permet la pénétration des radiations solaires plus en profondeur. Ceci expliquerait pourquoi la région du cou révèle à l’analyse plus de glace que les autres régions et pourquoi elle est la principale source de gaz de la comète (cf. Fig). Plus généralement, ces résultats suggèrent que la fracturation par effet thermique (formation du régolite) doit être beaucoup plus rapide à la surface des corps sans atmosphère présentant des concavités importantes (formation d’ombre) que ne le prévoit les estimations actuellement disponibles.

1. LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune, F-94100 Saint-Maur, France.
2. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS – Université d’Orléans, France.
3. Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France.
4. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France.
5. Université de Toulouse–UPS-OMP–IRAP, Toulouse, France. 6CNRS–IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France.
6. Altwegg, K et al. 2015. 67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio. Science 347 : 1261952–1.
7. Balsiger, H. et al. 2015. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko Science Advances 2015, 1500377 (online)
8. Hässig, M. et al. 2015. Time Variability and Heterogeneity in the Coma of 67P/Churyumov-Gerasimenko. Science 347 : aaa0276–1.
9. Rubin, M. et al. 2015. Molecular Nitrogen in Comet 67P/Churyumov-Gerasimenko Indicates a Low Formation Temperature. Science : 1–4. aaa6100.
10. Alí-Lagoa V., Delbo M., Libourel G. (2015) Rapid temperature changes and the early activity on comet 67P/CHURYUMOV-GERASIMENKO. The Astrophysical Journal Letters, 810 :L22

Classé sous :Atmosphère, Univers Balisé avec :Communiqué de presse, Résultat scientifique

Observation astronomique : le CNRS INSU et l’ONERA renforcent leur collaboration pour relever les défis du futur E-ELT

8 octobre 2015 by osuadmin

Pascale Delecluse, directrice de l’Institut national des sciences de l’Univers (INSU) du CNRS et Thierry Michal, directeur technique général de l’ONERA ont signé le jeudi 08 octobre une convention visant à renforcer leur coopération scientifique et technologique dans le domaine de l’optique adaptative pour l’observation astronomique. Le but est de développer des actions communes pour l’instrumentation des très grands télescopes gérés par l’Observatoire européen austral (ESO) et en particulier de réaliser conjointement les systèmes d’optique adaptative du programme E-ELT (European Extremely Large Telescope).

Ce partenariat entre l’ONERA et le CNRS-INSU prévoit, pour une période de 10 ans renouvelable, que des équipes intégrées des deux établissements mettent en commun leurs recherches pour réaliser les premiers systèmes d’optique adaptative (OA) du futur E-ELT. Avec une résolution 10 fois supérieure à celle de Hubble, l’E-ELT et ses instruments scientifiques, tous équipés d’optique adaptative (OA), sera en 2025 le télescope le plus puissant au monde. La conception et le développement de ces OA vont représenter un défi scientifique et technologique encore supérieur à celui qui a permis de réaliser l’instrument SPHERE qui équipe actuellement le Very Large Telescope (VLT) au Chili, instrument déjà réalisé en commun par des équipes du CNRS et de l’ONERA.

Comparaison des résolutions ultimes de HST- VLT- E-ELT avec et sans OA
Crédit : ESO

La première application concrète de cette convention est la réalisation des deux modules d’optique adaptative d’HARMONI (High Angular Resolution Monolithic Optical and Nearinfrared Integral), l’un des trois premiers instruments de l’E-ELT. Cet objectif est porté par une équipe intégrée à Marseille regroupant des chercheurs, ingénieurs et techniciens du Laboratoire d’astrophysique de Marseille (LAM) et de l’ONERA. L’enjeu de leurs recherches est de rendre possible l’observation des toutes premières étoiles et galaxies de l’univers, l’étude des supernovae (explosion d’une étoile en fin de vie) primordiales ou encore la caractérisation des atmosphères autour de planètes extrasolaires.

La signature de cette convention entre le CNRS INSU et l’ONERA marque le renouvellement et le renforcement d’une aventure commune initiée il y a plus de 30 ans, et qui a déjà conduit à la réalisation de premières mondiales comme l’instrument COME-ON en 1989 jusqu’au succès actuel de SPHERE sur le VLT.

Classé sous :Univers Balisé avec :Communiqué de presse

Découverte de mystérieuses ondulations au travers d’un disque de poussière, des structures inédites repérées autour d’une étoile proche

7 octobre 2015 by osuadmin

En analysant des images acquises par le Très Grand Télescope de l’ESO ainsi que le Télescope Spatial Hubble NASA/ESA, les astronomes ont découvert l’existence, au sein d’un disque de poussière situé autour d’une étoile proche, de structures inconnues jusqu’alors. Semblables à des ondes animées d’un mouvement rapide, ces structures figurent dans le disque de l’étoile AU Microscopii. Elles ne ressemblent en rien à ce qui a pu être observé ou envisagé jusqu’à présent. L’origine ainsi que la nature de ces structures offrent donc aux astronomes un tout nouveau champ d’investigations. Les résultats de leurs observations font l’objet d’une publication au sein de l’édition du 8 octobre 2015 de la revue Nature.

AU Microscopii, abréviée AU Mic, est une étoile jeune, proche de notre système solaire et entourée d’un disque de poussière étendu 1. L’étude de semblables disques de débris est susceptible de compléter notre connaissance des processus de formation planétaire à partir de telles structures.

Les astronomes ont recherché le moindre signe de structure déformée ou grumeleuse – témoignant de la possible existence de planètes – dans le disque de AU Mic. A cette fin, ils ont utilisé, en 2014, l’instrument SPHERE nouvellement installé sur le Très Grand Télescope de l’ESO. Aidés de ce puissant dispositif capable de discerner le moindre détail contrasté, ils ont fait une étrange découverte.

“Nos observations ont révélé quelque chose d’inattendu”, rapporte Anthony Boccaletti, chercheur CNRS au LESIA (Observatoire de Paris/CNRS/UPMC/Paris-Diderot), France, premier auteur de l’article. “Les images acquises par SPHERE laissent apparaître un ensemble de structures inexpliquées au sein du disque. Ces structures arborent une forme arquée, ou ondulée, bien différente de ce qui a déjà été observé par le passé.”

Sur les nouvelles images figurent, telles des vagues à la surface de l’eau, cinq arches formant globalement une structure ondulante à différentes distances de l’étoile. Après avoir repéré ces structures au moyen des données de SPHERE, l’équipe a consulté d’anciennes images du disque acquises, en 2010 et 2011, par le Télescope Spatial Hubble NASA/ESA 2. Il est ainsi apparu, non seulement que ces structures figuraient sur les images d’Hubble, mais également qu’elles avaient changé au fil du temps. En fait, ces ondulations se déplacent – et à une vitesse très élevée !

Les structures les plus éloignées de l’étoile semblent se mouvoir à vitesse plus élevée que les plus proches. Trois des structures au moins se déplacent si rapidement qu’elles pourraient bien échapper à l’attraction gravitationnelle de l’étoile. L’existence de vitesses si élevées exclut l’hypothèse selon laquelle ces structures résulteraient de perturbations causées sur le disque par des objets – telles des planètes – en orbite autour de l’étoile. Un élément inconnu, et véritablement inhabituel, doit être à l’origine de l’accélération de ces ondulations et de leur vitesse si élevée.

L’équipe ne peut affirmer avec certitude la cause de ces mystérieuses ondulations autour de l’étoile. Elle a toutefois envisagé et écarté un ensemble de phénomènes possibles, telle la collision de deux objets massifs et rares semblables à des astéroïdes libérant d’importantes quantités de poussière, ou bien encore des ondes spirales générées par des instabilités gravitationnelles à l’intérieur du système.

Mais l’hypothèse la plus prometteuse reste celle d’une interaction entre une flambée de cette étoile jeune et active avec une possible exoplanète dans le système. « Notre analyse n’a pas révélé de planète géante dans le système, mais nous avons d’ores et déjà de nouvelles observations prévues pour regarder encore plus proche de l’étoile et tenter d’éclaircir l’origine de ces mystérieuses structures » commente Arthur Vigan, astronome du Laboratoire d’Astrophysique de Marseille (LAM) qui a participé à l’analyse des données.

Cette découverte faite avec la caméra IRDIS de SPHERE est une victoire pour l’équipe d’ingénieurs et d’astronomes du LAM qui a conçu cette caméra, ainsi que d’autres éléments clés de l’instrument SPHERE. « La qualité des optiques d’IRDIS est sans précédent » précise Kjetil Dohlen, l’ingénieur système de SPHERE et IRDIS. « C’est cette qualité qui permet aujourd’hui de visualiser avec autant de précision ces si fines structures. C’est le travail de toute une équipe sur plusieurs années qui a permis d’en arriver là ».

“ SPHERE n’est que dans sa première année de fonctionnement et il est déjà capable d’étudier un tel disque. On ne peut donc que se réjouir de ce résultat des plus prometteurs qui confirme les grandes capacités de l’instrument”, conclut Jean-Luc Beuzit, co-auteur de la nouvelle étude et responsable du consortium international qui a conçu l’instrument SPHERE.

L’équipe ambitionne de continuer à observer le système AU Mic au moyen de SPHERE et d’autres instruments parmi lesquels ALMA, afin de comprendre les processus à l’œuvre. Pour l’instant toutefois, ces étranges structures demeurent un véritable mystère.

1. AU Microscopii se situe à 32 années-lumière de la Terre seulement. Le disque est essentiellement constitué d’astéroïdes que les violentes collisions ont réduits à l’état de poussière.
2. Les données ont été acquises par le Spectrographe Imageur du Télescope Spatial Hubble (STIS).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

La chasse aux exoplanètes : 20 ans déjà !

5 octobre 2015 by osuadmin

Nous fêtons le 20e anniversaire de la découverte de la première exoplanète (planète orbitant autour d’une étoile autre que notre soleil) en octobre 1995 avec le spectrographe ELODIE et le télescope de 1m93 de l’Observatoire de Haute‐Provence, par le professeur Michel Mayor, astronome à l’Observatoire de Genève et par Didier Queloz son étudiant alors en thèse. C’est une découverte majeure en astronomie.

Cette planète nommée « 51 Peg.b » a des caractéristiques très surprenantes : de taille supérieure à Jupiter, elle tourne en seulement 4 jours autour de son étoile et elle est six fois plus proche de son étoile que Mercure ne l’est du Soleil… A ce jour, environ 2000 exoplanètes ont été confirmées et cette passionnante quête continue, avec l’espoir de trouver une « soeur » de la Terre qui aurait les conditions pour l’apparition de la vie.

A l’occasion de cet anniversaire, l’Observatoire de Haute‐Provence de l’Institut Pythéas (CNRS – AMU) organise un colloque scientifique international « Colloque OHP 2015 – 20 Years of Giant Exoplanets » du 5 au 9 octobre 2015, qui fera le point des connaissances sur les exoplanètes géantes gazeuses (cf. affiche cicontre).

Le grand public pourra participer à cet anniversaire avec la conférence de Monsieur Michel Mayor, professeur de l’Université de Genève, qui aura lieu le lundi 5 octobre 2015 à 18h à l’Espace Bonne Fontaine de Forcalquier (entrée libre – sans réservation). Cette conférence s’intitule : « Planètes extrasolaires : Un ancien rêve de l’humanité – Une réalité de l’astrophysique moderne ». Nous découvrirons cette formidable quête aux exoplanètes et nous continuerons à nous interroger sur les mystères de l’Univers… Sommes‐nous seuls ? Existe‐il d’autres Mondes habitables et habités dans l’univers ?

Classé sous :Univers Balisé avec :Communiqué de presse

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter