• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Archives pour janvier 2016

Les queues spectaculaires du gaz ionisé arraché à NGC 4569, la galaxie spirale la plus massive de l’amas de la Vierge

19 janvier 2016 by osuadmin

Les galaxies ne se répartissent pas aléatoirement dans l’univers. Certaines d’entre elles se retrouvent dans des amas qui peuvent en contenir des centaines. Les astrophysiciens savent depuis longtemps que l’évolution des galaxies dans ces amas doit être affectée par cet environnement particulier. En effet, on y trouve en proportion beaucoup moins de galaxies spirales (présentant un disque dans lequel de nouvelles étoiles se forment à partir du gaz du milieu interstellaire) que de galaxies elliptiques ou lenticulaires (contenant très peu de gaz). Les quelques galaxies spirales que l’on trouve dans les amas contiennent en général moins de gaz et de jeunes générations d’étoiles que les galaxies plus isolées.

Plusieurs mécanismes ont été proposés pour expliquer ces différences. Premièrement, lorsque deux galaxies se croisent, des forces de marée (les parties plus éloignées de chaque galaxie subissent une force de gravité moins importante que les parties les plus proches, ce qui tend à « déchirer » la galaxie). Le deuxième mécanisme est la « pression dynamique » que subit le milieu interstellaire d’une galaxie qui traverse le gaz chaud et diffus que renferment les amas (cette force est similaire à celle que ressent par exemple un motard lancé à vive allure). Ces deux processus sont capables d’arracher le gaz des galaxies d’amas, et ainsi réduire la formation de nouvelles étoiles. Dans les galaxies spirales les plus massives, les théories les plus en vogue prévoient aussi un troisième mécanisme : l’énergie injectée dans le milieu interstellaire par le noyau actif qu’elles contiennent en leur centre peut aussi amener le gaz à s’échapper des galaxies.

L’identification du processus dominant est critique pour la mise au point des modèles et des simulations cosmologiques qui ont aujourd’hui une précision suffisante pour être comparable aux observations. Il est cependant très difficile d’observer le gaz alors qu’il est en train de quitter les galaxies en particulier en raison de sa faible densité. La mise à disposition d’un nouveau filtre très efficace pour détecter l’émission du gaz ionisé dans une raie de l’atome d’hydrogène (Halpha), sur la camera extrêmement sensible MegaCam du CFHT (Canada France Hawaï Telescope) offre aux astronomes un nouvel outil très performant pour la détection du gaz arraché aux galaxies par la pression dynamique.

Une équipe internationale dirigée par des chercheurs du Laboratoire d’Astrophysique de Marseille (LAM – CNRS/Aix-Marseille Université) a utilisé cet instrument pour observer NGC 4569, la galaxie spirale la plus massive de l’amas de la Vierge, qu’elle est en train de traverser à plus de 1200 km/s. Cet amas est encore en formation et nous offre donc l’opportunité de voir la transformation des galaxies dans les amas « en direct ». L’image Halpha obtenue au CFHT montre pour la première fois que des queues spectaculaires de gaz ionisé s’étendent sur plus de 300 000 années-lumière, ce qui les rend environ 5 fois plus grandes que la galaxie elle-même. Cette observation confirme que la pression dynamique est en train de vider la galaxie de son milieu interstellaire. Une estimation de la masse de gaz dans ces queues démontre que le phénomène est si violent que 95 % du milieu interstellaire a déjà été arraché, réduisant donc fortement la capacité de la galaxie à former de nouvelles étoiles.

Pour une galaxie aussi massive que NGC4569, on aurait pu penser que les forces gravitationnelles seraient suffisamment fortes pour retenir le gaz subissant la pression dynamique. Dans les modèles cosmologiques, les chercheurs supposent en effet que c’est plutôt l’effet du noyau actif de la galaxie qui est responsable de la réduction de l’activité de formation stellaire des galaxies de cette masse. Les nouvelles observations démontrent au contraire que l’effet dominant est bien la pression dynamique. Une contrainte dont il faudra tenir compte dans les modèles cosmologiques intégrant l’effet de l’environnement des galaxies.

Ce résultat démontre aussi que le nouveau dispositif au CFHT est très efficace pour identifier les objets en train d’interagir par effet de pression dynamique avec le gaz chaud et diffus des amas. Cela nous ouvre une nouvelle voie très prometteuse pour la compréhension du rôle que l’environnement joue dans l’évolution des galaxies.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Les algues microscopiques privilégient la photosynthèse plutôt que la calcification des coquilles en cas de baisse du CO2 océanique

14 janvier 2016 by osuadmin

Une nouvelle étude pilotée par des chercheurs du Département de Géologie de l’Université d’Oviedo (Espagne) et du CEREGE (CNRS – Université d’Aix-Marseille – IRD / France) laisse supposer qu’un taux de CO2 atmosphérique élevé n’est pas forcément une mauvaise nouvelle pour les algues microscopiques que sont les coccolithophores. Cette recherche, publiée dans le journal Nature Communications le 14/01/2016, montre pour la première fois que l’épaisseur des coquilles de coccolithophores a diminué d’environ de moitié au cours des 10 derniers millions d’années. Étonnamment, cette diminution suit la baisse sur le long terme de la concentration de CO2 dans les océans ; pour les auteurs ceci suggère qu’une importante quantité de CO2 pourrait aider les coccolithophores à construire des coquilles plus épaisses, au moins sur les échelles temporelles de plusieurs millions d’années. En apportant des données nouvelles sur les changements passés dans le CO2, cette étude apporte également la preuve du lien étroit existant entre taux du CO2 et les climats chauds.

Les organismes marins qui fabriquent des coquilles de carbonate de calcium – des moules aux coraux en passant par les algues microscopiques – sont emblématiques de la vie dans l’océan et risquent d’être les premières victimes des changements climatiques. En effet, les océans absorbent des quantités toujours plus grandes du dioxyde de carbone (CO2) émis par les activités humaines, et s’acidifient à l’échelle globale. Cette acidification pourrait empêcher la formation des coquilles ou squelettes calcaires ou les amincir.

Coccolithophores cultivées en laboratoire, photographiés sur un filtre en cellulose avec un microscope à balayage électronique (MEB).
Crédit : Lorena Abrevaya (Univ. Oviedo)
Zoom
Crédit : Lorena Abrevaya (Univ. Oviedo)

Pour étudier les relations entre changements climatiques et organismes à coquilles calcaires, les chercheurs se sont intéressés aux coccolithophores, un groupe de minuscules algues unicellulaires du phytoplancton dont les coquilles fossiles s’accumulent au fond des océans constituant d’inestimables archives de l’histoire de la Terre. C’est à ces organismes que l’on doit les grandes falaises de craie de la côte normande. De même, l’étude de ces coquilles fossiles les aide à mieux comprendre comment ces organismes, à la base de la chaine alimentaire océanique, se sont adaptés aux changements de l’océan dans le passé géologique.

Pour cette nouvelle étude, les chercheurs ont extrait les minuscules coquilles fossiles de carottes sédimentaires prélevées dans l’océan Indien et dans l’océan Atlantique tropical. En mesurant la quantité de lumière passant à travers les coquilles avec un microscope spécialisé, ils ont déterminé l’épaisseur de chaque coquille. En combinant de telles mesures effectuées pour des milliers de coquilles, ils ont pu montrer que simultanément, dans les deux océans, les coquilles ont commencé s’amincir il y a environ 9 millions d’années. La synchronicité de ce changement dans deux zones considérablement éloignées indique qu’il est probable que la cause de l’amincissement des coquilles est due à un changement global de l’état de l’océan.

Pour comprendre les causes de ce changement global de l’épaisseur des coquilles, l’équipe a effectué des mesures géochimiques des coquilles et des résidus de matière grasse appelés alcénones, produite par les algues conservés dans les mêmes sédiments pendant des millions d’années. Les mesures de la chimie des alcénones témoignent de changements dans la concentration de CO2 dans l’océan, une ressource essentielle pour la croissance des algues. Les mesures des types de carbone dans les coquilles ont permis de montrer comment la cellule est capable de répartir le carbone prélevé de l’eau de mer entre les processus de calcification et de photosynthèse qui en consomment tous les deux. Ces résultats confirment que les coquilles se sont amincies alors que le CO2 global diminuait et que les coccolithophores se sont adaptées en détournant le carbone disponible vers la photosynthèse au détriment de la fabrication de la coquille. Ces résultats sont en accord avec une étude précédente datant de 2013 *, montrant qu’avec peu de CO2 ces algues s’adaptent en réduisant le carbone réservé pour la formation des coquilles.

En même temps, la démonstration d’une diminution du CO2 sur cette période de temps permet de mieux comprendre la sensibilité du climat aux variations de CO2 sur des échelles de temps longues dans le passé. Des preuves d’un fort refroidissement des océans au cours des 15 derniers millions d’années ont été accumulées par de nombreuses équipes de scientifiques au cours de la dernière décennie. En montrant clairement un important déclin de la concentration de CO2 dans l’océan dans cet intervalle de temps, les nouvelles données prouvent le lien suspecté par de nombreux scientifiques entre CO2 et climat sur cette période, et permettent d’expliquer le refroidissement. Les conditions chaudes et le haut niveau de la mer d’il y a 10 à 15 millions d’années, comparé à aujourd’hui, ont très probablement été causés par une plus forte concentration en CO2 atmosphérique à cette époque.

Le fait que les algues calcifiantes étudiées synthétisent des coquilles plus épaisses pendant les périodes pendant lesquelles le CO2 est élevé, ne signifie pas qu’il n’y a pas de danger pour tous les organismes calcifiants de l’océan. Les coccolithophores font figure d’exception parmi les organismes calcifiants océaniques : ce sont des plantes, et ont donc besoin de carbone à la fois pour la photosynthèse et pour la calcification. Les organismes calcifiants qui ne font pas de photosynthèse, comme les coraux, les huîtres et certains planctons (les foraminifères par exemple), répondront très probablement de manière spécifique pour la calcification et les adaptations potentielles à un fort taux de CO2. De plus, les vitesses de changement de la chimie des océans sont bien plus graduelles dans cette étude que celles des changements en cours et prédits pour les prochaines centaines d’années.

Classé sous :Atmosphère, Biodiversité, Environnement, Océan Balisé avec :Communiqué de presse

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter