• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Océan

L’Arctique en pleine transformation

14 avril 2020 by osuadmin

Suite aux deux expéditions océanographiques menées en 2015 en Arctique dans le cadre du programme international GEOTRACES, des chercheurs de la Woods hole oceanographic institution (WHOI) et leurs collègues internationaux [1] ont mis en évidence que des quantités importantes de carbone et d’éléments traces en provenance des rivières et sédiments du plateau continental étaient apportées près du Pôle Nord par la dérive transpolaire, un important courant de surface. Associé au réchauffement climatique, cet apport de nutriments et contaminants pourrait modifier la productivité phytoplanctonique dans l’Arctique.

Les éléments traces, comme le fer, sont des nutriments essentiels à la vie océanique. Ils alimentent la croissance du phytoplancton, ces algues microscopiques qui constituent la base de la chaîne alimentaire marine. En général, plus de phytoplancton conduit à davantage de zooplancton (petits poissons et crustacés), qui peut ensuite être consommé par les prédateurs océaniques « supérieurs » comme les phoques et les baleines. Les contaminants, notamment le mercure, suivent le même chemin et des niveaux très élevés chez les animaux arctiques ont été retrouvés.

PNG - 1.6 Mo
Rencontre des brise-glaces FS Polarstern et USCGC Healy au Pôle Nord, le 7 septembre 2015.
Crédit : Stefan Hendricks, AWI

En 2015, les océanographes effectuant des recherches dans l’océan Arctique dans le cadre du programme international GEOTRACES ont trouvé des concentrations de carbone et d’éléments traces beaucoup plus élevées dans les eaux de surface situées près du Pôle Nord que dans celles situées de chaque côté de la dérive transpolaire, un important courant de surface capable de transporter, à travers l’océan Arctique en passant par le Pôle Nord, les eaux provenant du plateau continental sibérien.

Les nombreux éléments traces qui pénètrent dans l’océan mondial en provenance des rivières et des sédiments du plateau continental sont en général rapidement éliminés de la colonne d’eau. En revanche, les chercheurs ont mis en évidence que, dans l’océan Arctique, les éléments traces étaient liés à l’abondante quantité de matière organique issue des rivières, ce qui leur permettait d’être transportés par la dérive transpolaire jusqu’à l’Arctique central, à plus de 1 000 kilomètres de leurs sources.

Du fait du réchauffement climatique, les chercheurs s’attendent à ce que le dégel des sols conduise à une augmentation du ruissellement et donc de l’apport d’éléments traces auparavant piégés dans le pergélisol, ce qui pourrait entraîner une augmentation de la quantité de nutriments et contaminants atteignant le centre de l’océan Arctique. Or, à mesure que l’Arctique se réchauffe et que de grandes parties de l’océan se libèrent de la glace pendant de longues périodes, les algues marines deviennent plus productives. Un plus grand apport de nutriments pourrait donc alimenter encore davantage cette production d’algues.

Pour l’instant, si les chercheurs savent que la structure des écosystèmes marins est déterminée par la disponibilité des nutriments, ils ne peuvent dire exactement quels changements tout cela pourrait induire. Concernant le mercure, dont le cycle biogéochimique est étroitement lié à la photochimie et aux flux d’échanges importants à l’interface atmosphère – océan, de fortes modifications sont également attendues avec la disparition de la glace de mer en été.

Bien qu’une augmentation des nutriments puisse stimuler la productivité marine de l’Arctique, les chercheurs mettent en garde sur le fait que la perte continue de glace de mer aggrave le réchauffement climatique, ce qui aura un impact plus large sur les écosystèmes.

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Réconcilier l’histoire des vents et des pluies de la mousson au Miocène

19 avril 2022 by osuadmin

La mousson d’été est un phénomène climatique majeur en Asie du Sud, dont les origines et l’évolution passée restent débattues. Elle s’exprime aujourd’hui par de fortes pluies sur le continent pendant l’été, associées à des vents intenses qui remontent le long des côtes Est-africaines et génèrent des remontées d’eau froides dans l’océan côtier (upwelling) qui favorisent la production biologique. L’évolution de cette production biologique au cours du temps, déduite à partir de l’analyse de carottes sédimentaires prélevées du fond des océans, est utilisée pour comprendre l’évolution des vents de la mousson passée. Les informations issues des carottes indiquent la mise en place des vents de la mousson moderne y a environ 13 millions d’années. Toutefois, les enregistrements continentaux indiquent l’existence de pluies saisonnières et intenses, typiques de la mousson en Asie du Sud, depuis au moins 40 millions d’années.

A l’aide du modèle de Système-Terre français IPSL-CM5A2 et du modèle de biogéochimie océanique PISCES, récemment adaptés pour l’étude des paléoclimats, un panel de simulations numériques a permis d’évaluer le lien entre l’évolution des vents et des pluies de mousson, des upwelling et de la géographie au cours du Miocène (entre -23 et -5 millions d’années). Les résultats obtenus montrent que la chronologie de l’évolution des vents et des précipitations est contrôlée par l’histoire géologique de différents reliefs autour de l’océan Indien, et suggèrent que les chronologies discordantes enregistrées dans l’océan et sur les continents traduisent la mise en place en deux temps du système de mousson moderne. Ainsi, les pluies intenses et saisonnières qui existent depuis au moins 40 millions d’années sont modulées par la formation du relief dans la région himalayenne. La distribution actuelle des vents et les upwelling se mettent en place vers 13 millions d’années, en réponse à la formation de relief à l’Est de l’Afrique et dans la région de l’Iran, et à la fermeture du passage maritime reliant l’océan Indien à la mer Méditerranée (passage de la Tethys).

Simulations

Voir en ligne : L’actualité sur le site de l’INSU

Classé sous :Atmosphère, Océan, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Vers la présence d’une source de méthane dans l’océan d’Encelade ?

2 février 2015 by osuadmin

Des chercheurs du Laboratoire d’Astrophysique de Marseille (LAM, Aix-Marseille Université / CNRS) et de l’Institut Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UTINAM, Université de Franche-Comté / CNRS) et, en collaboration avec des chercheurs du Southwest Research Institute (San Antonio, Etats-Unis), viennent de montrer que le méthane observé par la mission Cassini dans les geysers d’Encelade, un des principaux satellites de Saturne, pourrait provenir d’une source contemporaine localisée dans son océan caché. Ce résultat vient d’être publié dans la revue Geophysical Research Letters.

Les données de la mission NASA/ESA Cassini ont permis aux scientifiques de mieux comprendre les processus en œuvre à l’intérieur d’Encelade, une des lunes les plus intrigantes de Saturne. Pressenti comme étant un monde de glace à priori inactif, Encelade a créé la surprise en 2005 lorsque Cassini a montré, dans la région du pôle sud, la présence de geysers éjectant de la vapeur d’eau dans l’espace alimentant l’anneau E de Saturne en particules glacées. On pense désormais qu’Encelade abrite un océan d’eau liquide enfoui sous plusieurs dizaines de kilomètres de croûte de glace, et que les panaches proviennent de cet océan.

La sonde Cassini a effectué plusieurs survols à l’intérieur des panaches permettant, grâce à son spectromètre de masse, de déterminer la composition du mélange supposé provenir de l’océan. Des espèces volatiles telles que l’hydrogène, le dioxyde de carbone et le méthane, ont été détectées en plus de l’eau.

Une équipe de scientifiques Français et Américains a montré que dans les conditions de l’océan interne d’Encelade, des clathrates, une forme particulière de la glace d’eau contenant des gaz piégés dans des cages, pourraient se former et appauvrir l’océan en espèces volatiles.

Les résultats des simulations de l’équipe montrent qu’en particulier le méthane est très efficacement piégé dans les clathrates, et qu’il devient presque dix fois moins abondant dans l’océan que la valeur mesurée dans les geysers. Pour que Cassini puisse observer autant de méthane, celui-ci doit donc être ajouté dans l’océan par une source inconnue de manière encore plus rapide que sa séquestration ne le permet dans les clathrates.

Les implications sont particulièrement intéressantes étant donné que le méthane peut être produit par des réactions hydrothermales ou par des sources biogéniques. La possibilité d’une activité hydrothermale dans l’océan d’Encelade est notamment appuyée par la présence de nanoparticules de silicates dans les geysers détectées par Cassini. En outre, le fond de l’océan glacial de cette lune de Saturne pourrait aussi abriter des points chauds, avec des températures dépassant 100°C.

Une autre explication de la mesure de l’abondance du méthane par Cassini serait que les clathrates fassent partie du processus de formation des panaches : apportés par l’eau à des profondeurs plus faibles, ils ne peuvent plus exister en raison de la baisse de pression et se dissocient, libérant leur contenu et participant à la saturation de l’eau en gaz. De la même manière que le dioxyde de carbone fait sauter le bouchon d’une bouteille de Champagne, cette saturation en gaz ferait rejaillir l’eau en surface, qui continuerait son chemin vers l’espace jusqu’aux endroits où Cassini a réalisé ses prélèvements.

La mission Cassini, étendue jusqu’en 2017, continuera à effectuer des mesures de la composition des gaz présents dans les geysers d’Encelade. Ces mesures ultérieures permettront d’avoir une idée plus claire concernant les mécanismes de production de ces plumes et ainsi de mieux comprendre l’origine du méthane détecté.

Laboratoires impliqués :

LAM – Laboratoire d’Astrophysique de Marseille (Aix-Marseille Université / CNRS) UTINAM – Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (Université de Franche-Comté / CNRS) Southwest Research Institute, San Antonio, Texas, USA University of Texas at San Antonio, USA

Classé sous :Océan, Univers Balisé avec :Communiqué de presse

Impact biogéochimique et écologique des îles du Pacifique

9 juin 2022 by osuadmin

Dans les eaux pauvres du Pacifique tropical, les îles sont des sources de nutriments pour les algues photosynthétiques microscopiques, ou phytoplancton, des eaux alentour. Il en résulte un enrichissement en phytoplancton – un « bloom » – proche des îles, qui supporte les niveaux trophiques supérieurs, y compris les poissons qui sont essentiels à la survie des habitants des îles. Cet effet fertilisant, dit « effet d’île », se traduit par une augmentation de la concentration en chlorophylle (un indicateur de la biomasse phytoplanctonique) ce qui permet de l’identifier par observations satellitaires de couleur de l’eau. Les chercheurs ont développé un algorithme qui identifie automatiquement la zone enrichie par les îles à partir d’une carte de concentration en chlorophylle et l’ont appliqué à une base de données de toutes les îles du Pacifique. L’algorithme détecte des enrichissements saisonniers pour 99 % des îles, représentant 3 % de la surface du Pacifique tropical alors que les îles n’en représentent que 0.4 %. Les chercheurs ont quantifié les augmentations locales et à l’échelle du bassin de la chlorophylle et de la production primaire en comparant les eaux enrichies par effet d’île avec les eaux voisines. Ils ont aussi découvert, pour la première fois, des impacts significatifs sur la structure de la communauté phytoplanctonique et sur sa biodiversité, visibles dans les anomalies du signal de couleur de l’eau. Ces résultats suggèrent qu’en plus de forts impacts biogéochimiques locaux, les îles peuvent avoir des impacts écologiques encore plus importants.

JPEG - 274.4 ko

Effets d’île détectés à partir de données satellitaires de chlorophylle.

Les effets d’îles sont entourés en rouge, la couleur indiquant l’augmentation en chlorophylle à côté des îles (carte moyenne et agrandissements pour certains mois de l’année).

Crédit : MIO

Classé sous :Atmosphère, Biologie, Chimie, Océan Balisé avec :Communiqué de presse, Résultat scientifique

L’intensification des vents d’ouest responsable d’une augmentation de la fonte en Antarctique

5 septembre 2022 by osuadmin

La calotte glaciaire antarctique représente le plus grand contributeur potentiel à l’élévation globale du niveau des mers. Cette contribution est largement contrôlée par la fonte basale des plateformes de glace (extensions flottantes de la calotte glaciaire ou ice shelves). L’impact des variations climatiques, et tout particulièrement des variations de régime des vents circumpolaires, sur la fonte basale est encore mal connu. Ainsi, on ne sait pas comment l’augmentation du Mode Annulaire Austral (SAM en anglais) va influencer la fonte basale des ice shelves. L’indice SAM est une mesure de la différence de pression atmosphérique entre les moyennes et hautes latitudes de l’hémisphère sud. Les phases positives du SAM sont caractérisées par une intensité accrue et un déplacement vers le sud de la ceinture de vents d’ouest. Elles entraînent un apport accru d’eaux chaudes et salées (upwelling) vers les ice shelves, ainsi qu’une augmentation de la température et de la salinité de l’océan de subsurface près de la base des ice shelves. Le contraire se produit pour les phases négatives du SAM.

Une nouvelle étude, menée par un consortium international impliquant des scientifiques de l’Université Catholique de Louvain en Belgique, du CEREGE, de l’IGE et de l’Université de Northumbria au Royaume-Uni, a étudié l’intensification du SAM. Pour cela, l’équipe a réalisé des expériences numériques idéalisées à l’échelle de l’Antarctique avec un modèle simulant les interactions entre l’océan et la glace de mer, tout en prenant en compte la circulation océanique sous les ice shelves pour différentes phases du SAM. L’étude montre qu’une augmentation d’environ 30 % du SAM entraîne une perte nette de masse basale de 40 Gt an-1 (c’est-à-dire environ la moitié du changement de masse de la calotte glaciaire antarctique sur la période 1992-2011), avec de forts contrastes régionaux autour de l’Antarctique. La compréhension des facteurs physiques à l’origine de cette fonte contrastée fournit des informations essentielles pour appréhender l’élévation future du niveau des mers.

JPEG - 102.4 ko

Voir en ligne : L’article sur le site de l’INSU

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Une nouvelle compréhension du cycle du mercure dans l’Océan Arctique

5 septembre 2022 by osuadmin

La faune arctique contient des niveaux de mercure des plus élevés. La compréhension de l’Océan Arctique est essentielle pour en comprendre les raisons, car le méthylemercure, une neurotoxine bioaccumulable, est formé à partir de mercure inorganique dans l’océan lui-même. Une nouvelle étude révise le bilan du mercure dans l’océan Arctique. Ces travaux constatent que le bilan révisé du mercure dans l’Océan Arctique (environ 1 870 tonnes) est inférieur aux estimations précédentes (2 847 à 7 920 tonnes), ce qui implique une plus grande sensibilité au changement climatique et aux émissions anthropiques. Les résultats mettent à jour la compréhension actuelle du cycle du mercure dans l’Arctique.

La sédimentation du mercure particulaire (122 ± 55 tonnes par an) des eaux de surface vers les sédiments du plateau continentale est le plus grand mécanisme d’élimination du mercure dans l’Océan Arctique. Le bilan révisé de l’Océan Arctique suggère que l’enfouissement du mercure dans les sédiments du plateau continentale (42 ± 31 tonnes par an) pourrait être sous-estimé de plus de 100% (52,2 ± 43,5 tonnes par an). Des chercheurs de l’institut méditerranéen d’océanologie (MIO / CNRS / Aix-Marseille Université / IRD / Université de Toulon), de l’université norvégienne de la science et technologie (NTNU), de l’institut norvégien pour la recherche pour l’eau (NIVA) ont organisé plusieurs expéditions océanographiques en mer de Barents, jusqu’à présent seulement possible en été.

Les premières observations pendent la nuit polaire, publiée le 18 Juillet 2022 dans Nature Geoscience, montrent une perte d’un tiers du mercure total entre l’été et l’hiver, et mettent en évidence un nouveau mécanisme d’enlèvement par le manganèse provenant des sédiments. Aucun changement des concentrations de méthylmercure sont observées, probablement dues à une plus faible affinité pour les particules et à la présence d’espèces gazeuses (dimethylemercure). L’étude du cycle du mercure montre qu’il faudrait réévaluer les budgets et les modèles en considérant l’aspect saisonnier. Le temps de vie du méthylemercure dans l’océan arctique est plus long (25 ans) que celui du mercure inorganique (3 ans), et cette étude suggérée des niveaux élevés de méthylmercure à l’avenir.

JPEG - 122.5 ko

Le doctorant Stephen G. Kohler sur la glace de mer arctique.

Crédit : Christian Morel

Voir en ligne : L’article sur le site de l’INSU

Classé sous :Atmosphère, Océan Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter