• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Surface continentale

Le chlore 36, un nouvel outil pour l’évaluation de la dynamique du carbone des sols

12 octobre 2023 by osuadmin

Le carbone organique du sol est un élément clé de la santé des sols du fait de son rôle sur leur structure, leur fertilité et sur l’atténuation des émissions anthropiques annuelles de CO2, le carbone organique du sol étant l’un des plus grands réservoirs de carbone terrestre que l’homme peut gérer.
Or un élément important pour évaluer la capacité du sol à stocker du carbone est son âge, qui peut être évalué par modélisation ou expérimentalement à l’aide d’isotopes du carbone. Mais les résultats obtenus pas les différentes méthodes ne sont pas cohérents et présentent même des différences très importantes. Par exemple la méthode bien connue qu’est la datation au carbon-14 fournit des âges du carbone des sols supérieurs d’un facteur 6 à 10 à ceux estimés par la modélisation et par l’utilisation des isotopes stables du carbone.

Une méthode totalement indépendante est donc nécessaire. Nous proposons une méthode alternative et indépendante basée sur la mesure du 36Cl dans les sols. Le 36Cl est un radionucléide produit naturellement dans l’atmosphère sous l’effet du rayonnement cosmique mais il est également produit de façon anthropique par l’industrie nucléaire. Sa production a augmenté de trois ordres de grandeur lors des essais de bombes nucléaires dans les années 50-70. Dans les sols, une partie du chlore, dont le 36Cl, est retenue par la matière organique du sol sous forme de molécules organochlorées.

Ainsi, nous montrons que l’arrivée massive de 36Cl dans les sols lors des essais nucléaires et son stockage dans les sols peuvent être utilisés afin d’évaluer l’âge du carbone organique des sols. En effet, nous avons mesurés les stocks de 36Cl retenus dans les différentes couches d’un sol forestier échantillonné dans l’une des stations du site atelier de l’Observatoire Pérenne de l’Environnement (OPE) en Meuse/Haute-Marne. Le Cl et 36Cl des sols ont été extrait par un protocole d’hydropyrolyse mis au point au CEREGE. Les mesures de Cl et de 36Cl ont été faites avec une grande précision à l’instrument national ASTER qui est un accélérateur spectromètre de masse.Ces données sont comparées aux flux entrants (pluie, végétation) et sortants (drainage) en 36Cl (Figure 1) et permettent de déterminer le temps de rétention du 36Cl dans les sols. Nos résultats montrent que ce temps augmente avec la profondeur avec des durées allant de 20 ans en surface à 322 ans à 60 cm de profondeur. Ces durées de rétention du 36Cl dans les sols sont comparables aux âges moyens estimés par les approches basées sur la modélisation ou les isotopes stables du carbone. Ce travail suggère donc que la durée de rétention du 36Cl dans un sol peut être utilisé comme un indicateur de l’âge du carbone organique du sol.

Utilisé pour estimer la durée de rétention de 36Cl dans le sol. A gauche : Les différentes boites représentent les couches du sol, et la taille est proportionnelle aux stocks de 36Cl mesurés dans différentes couches du sol. Les flèches représentent les flux entre ces différentes couches. Au sein de chaque couche, une petite fraction du flux de 36Cl est fixée dans la matière organique de la couche. Cette fraction est estimée à 5 % du flux en surface et décroit exponentiellement avec la profondeur. À cette décroissance des quantités retenues, correspond une augmentation de la durée de rétention avec la profondeur (figure de droite).

Classé sous :Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

L’érosion des sols amplifiée par les activités humaines

14 septembre 2023 by osuadmin

L’érosion des sols constitue une menace mondiale majeure touchant des milliards de personnes, en particulier dans les régions en développement. Alors que la crise environnementale s’aggrave, cette menace systémique pourrait encore augmenter, accentuant les vulnérabilités socio-économiques et environnementales de nombreux pays. Les activités humaines n’altèrent peut-être pas les mécanismes fondamentaux de l’érosion, mais elles en modifient significativement la vitesse, la fréquence et l’intensité. Dans ce contexte, la région de Brasília et la savane du Cerrado offrent un laboratoire naturel essentiel, non seulement en raison de la nécessité urgente de préserver cet écosystème fragile, mais aussi en raison des tensions entre la conservation de la nature et le développement humain.

Cette étude vise à mesurer les taux de processus naturels, notamment la dénudation et l’abaissement de la surface, qui façonnent l’évolution du paysage au centre du Brésil sur une longue période (103-106 ans), et à les comparer aux taux d’érosion accélérée par l’homme près de la capitale Brasília, au cours des dernières décennies. Pour ce faire, une approche multidisciplinaire combinant des nucléides cosmogéniques produits in situ (10Be et 21Ne) et atmosphériques (10Be), des radionucléides environnementaux à courte durée de vie (210Pb, 137Cs) ainsi que des modèles de perte de sol par érosion hydrique (RUSLE) a été mise en place. Cette approche a permis de comparer des zones naturelles (plateau couvert de Cerrado dans le parc national de Brasília) avec des terres altérées par les activités humaines (plateau déboisé en dehors du parc).

À travers une étude novatrice dans la région de Brasília, cette recherche démontre comment des activités agricoles récentes perturbent les processus géomorphologiques naturels, lentement établis au cours des dernières dizaines à centaine de milliers d’années, provoquant des taux d’érosion 160 fois plus élevés et mettant en péril la durabilité de la ressource sol. Bien que les estimations aient une certaine limitation spatiale, elles devraient contribuer à façonner des politiques de conservation efficaces pour le Cerrado brésilien et à renforcer la prise de conscience environnementale nécessaire en réponse à la crise actuelle.

Crédit : Siame et al.
Crédit : Siame et al.

 

Source : https://www.insu.cnrs.fr/fr/cnrsinfo/lerosion-des-sols-amplifiee-par-les-activites-humaines

Classé sous :Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Les grandes failles de Californie sont lisses à la profondeur où se produisent les séismes

4 juillet 2023 by osuadmin

La relocalisation précise des séismes montre des failles présentant des surfaces lisses, planes ou arquées, sur des échelles allant de quelques centaines de mètres à quelques dizaines de kilomètres et ce, à la profondeur sismogène. Cette régularité peut jouer un rôle crucial dans la genèse des grands séismes, et peut transformer notre compréhension de la physique de la rupture et des risques sismiques.

Le comportement physique des failles, et les risques sismiques qui en découlent, dépendent fortement de leur caractère rugueux ou lisse à la profondeur ou l’énergie est libérée lors des tremblements de terre. À cette profondeur d’environ 4-15 km en Californie, la localisation des séismes a suggéré que les failles sont irrégulières aux échelles supérieures au kilomètre. De plus, le tracé des failles cartographiées en surface est aussi généralement complexe et présente des décalages à toutes les échelles. Ceci amène à supposer une forte rugosité des failles majeures en profondeur, la rupture d’un grand séisme reviendrait donc à essayer de faire glisser deux boites à œufs le long de leurs côtés bosselés.

Les auteurs dont un chercheur du CNRS-INSU (voir encadré), appliquent une nouvelle procédure de localisation des séismes à de grandes séquences de tremblements de terre et à la microsismicité le long de failles décrochantes en Californie. Cette méthode multi-échelle permet de corriger certains effets de distorsion et la relocalisation des séismes révèlent que les surfaces de failles sont lisses en profondeur, planes ou arquées sur des échelles allant de quelques centaines de mètres à quelques dizaines de kilomètres. Les scientifiques démontrent donc que la rupture sismique ressemble davantage à des boites à œufs glissant sur leurs côtés lisses, et ceci a des conséquences évidentes. La présence en profondeur de surfaces lisses à plusieurs échelles dans les zones de failles décrochantes majeures peut influencer l’initiation, la rupture, la direction et l’arrêt des ruptures sismiques, et ces failles lisses sont peut-être même nécessaires pour que de grands tremblements de terre se produisent. Ces résultats peuvent aider à cartographier l’aléa sismique et viennent renforcer les travaux récents sur les ruptures en surface. Ces travaux montrent que les ruptures en surface reflètent en grande partie des déformations secondaires peu profondes et souvent complexes, et non les surfaces de glissement sismique actives en profondeur.

Classé sous :Surface continentale, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Les tectites de Côte d’Ivoire, un trésor scientifique en territoire aurifère

3 juillet 2023 by osuadmin

Les tectites sont des verres d’impact qui sont éjectés à plusieurs centaines, voire milliers de kilomètres lors d’un impact météoritique. Ces objets sont rares et recherchés par les scientifiques qui s’intéressent aux crises environnementales lors des collisions d’astéroïdes avec notre planète. Une étude, réalisée dans le cadre d’une coopération internationale1 qui inclue des scientifiques du CNRS-INSU (voir encadré), révèle des nouvelles découvertes au sein du champ de tectites le moins connu au monde situé en Côte d’Ivoire. Découvert en 1935, ce patrimoine scientifique exceptionnel était resté inexploré depuis les années 60 et seulement une petite centaine de spécimen étaient répertoriés dans le monde.

Un doctorant Ivorien, Pétanki SORO, a repris le flambeau des explorateurs du passé, et a effectué 6 missions de terrains dans le centre-est de la Côte d’ivoire. Cette exploration a permis la découverte de 174 nouveaux spécimens, tout en révélant que le champ de tectites s’étend au moins sur 4100 km2 au lieu des 1500 km2 délimités par les travaux passés. Certains de ces spécimens s’avèrent de composition chimique hors norme et leur étude permettra de mieux comprendre le processus de formation des tectites.

L’essentiel de ces tectites a été retrouvée auprès des villageois, ces objets étant parfois conservés par leur propriétaire depuis des dizaines d’années, tandis que le souvenir des missions d’exploration passées était encore présent parmi les plus anciens. L’exploration se déroule dans un territoire affecté par une activité minière artisanale dédiée à la recherche de l’or. Les artisans miniers, ainsi que les agriculteurs, ont donc été informés de la nature de ces objets au cours de rencontres avec les autorités villageoises, ce qui a permis ensuite de récupérer, sur une période de quatre ans, un grand nombre de spécimens.

1. Universités Houphouët-Boigny d’Abidjan, d’Aix-Marseille et l’Institut de Recherche pour le Développement (IRD).

Classé sous :Surface continentale, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Les sols vitrifiés du désert d’Atacama (Chili) : des traceurs d’incendies naturels à la fin du Pleistocène

15 mai 2017 by osuadmin

En dehors des volcans, les roches vitrifiées sur terre résultent d’incendies spontanés déclenchés ou alimentés par des composés organiques fossiles (charbon ou gaz) qui produisent ce que les géologues appellent des « paralavas » ou laves paradérivées. Mais on connait aussi des verres formés lors d’impact hypervéloces d’astéroïdes. Distinguer entre les deux origines s’avère souvent assez évident en présence de veines de charbon dans le premier cas ou de cratère d’impact dans le second.

En l’absence d’évidence directe pour un impact ou d’un contexte géologique favorable pour la formation de paralavas, certains verres ont été interprétés comme le résultat de l’explosion à très basse altitude de matériel cométaire ou astéroïdal. Dans ce cas et par analogie aux explosions nucléaires, l’énergie cinétique de l’astéroide ou de la comète se transforme en radiations suffisamment intenses capables de vitrifier la surface du sol en un temps très court.

Image satellite avec localisation des principaux sites d’observation des verres silicatés de Pica (Chili).
Crédits Google Earth

En 2012, le Service Géologique Chilien (SERNAGEOMIN) a découvert des sols vitrifiés présents de manière discontinue sur de grandes étendues (une bande longitudinale de plus de 70km de longueur) dans la région de Pica au nord du désert d’Atacama, l’une des régions les plus arides de la planète. Une étude pluridisciplinaire menée par une équipe française impliquant Géoscience Rennes (CNRS / Université Rennes 1), le CEREGE (CNRS / Université Aix-Marseille / IRD / Collège de France), le LPG Nantes (Université de Nantes / CNRS / Université d’Angers), l’IPAG/OSUG (CNRS / Université Grenoble Alpes) en collaboration avec des chercheurs chiliens a démontré que ces verres se sont formés lors d’incendies dans des sols enrichis en matière organique et en plantes silicifiées. Il s’agit de verres silicatés (environ 60% SiO2) très poreux avec une minéralogie témoignant de conditions réductrices extrêmes (sphérules de fer métallique, phosphures et monosulfures de fer, etc.), mais dépourvus d’indice géochimique de contaminant extra-terrestre. Grace à une étude paléomagnétique complétant des datations au carbone 14, au moins deux événements thermiques distincts séparés de plusieurs centaines d’années ont été mis en évidence, ce qui est incompatible avec une origine extraterrestre (explosion d’un bolide à basse altitude).

Photographies de terrain (a, b, c, d) de verres silicatés observés à la surface du désert d’Atacama (nord du Chili). Sous les verres, on peut parfois observer une couche décimétrique d’argiles cuites (b) ou une couche de restes de plantes (d). Ces plantes (d, e) sont fortement silicifiées (f, et image au microscope électronique g) et leur fusion contribue à la formation des verres (e).
Crédits Pierrick Roperch / Jérôme Gattacceca

D’après les observations de terrain, les sols vitrifiés sont distribués principalement dans d’anciennes zones humides où l’on peut encore observer des litières de plantes silicifiées. Le désert d’Atacama a en effet connu des périodes humides à la fin du Pléistocène, contemporaines des phases de développement maximum des grands paléolacs du sud de l’Altiplano Bolivien aujourd’hui représentés par le salar d’Uyuni et le salar de Coipasa. De grandes oasis se sont développées le long du piedmont andin lorsque la nappe phréatique était presque au niveau du sol. De la matière organique et des plantes riches en précipités minéraux (phytolithes) ou partiellement silicifiées se sont accumulés dans le sol des zones humides. Les incendies peut-être ressemblant aux feux de tourbes se sont déclenchés lorsque le climat est devenu plus aride, au moment de l’abaissement de la nappe phréatique. Ces résultats montrent que sous certaines conditions environnementales et climatiques, les températures lors d’incendies spontanés peuvent être suffisamment élevées pour vitrifier les sols. Cette étude conduira certainement à reconsidérer l’origine de certains verres décrits comme verres d’impacts dans d’autres régions du monde (Verre Lybique, mais surtout ceux d’Edeowie en Australie, de Dakhleh en Egypte ou ceux décrits dans des sédiments Miocène d’Argentine), avec des implications pour la quantification de l’aléa lié à l’explosion de bolides dans l’atmosphère de la Terre.

Ces types de verres ont aussi une importance géologique considérable, comme traceurs de potentiels changements climatiques et/ou environnementaux.

Schéma illustrant les principales étapes et conditions nécessaires pour la formation des verres silicatés. a) développement d’oasis pendant les périodes humides de la fin du Pléistocène grâce à l’affleurement de la nappe phréatique et accumulation de matière organique et de plantes riches en silice dans le sol. b) baisse du niveau de la nappe phréatique et assèchement des oasis. c) Formation des verres lors d’incendies dans les sols suivant un processus similaire à celui des feux de tourbe.
Crédits Pierrick Roperch / Jérôme Gattacceca

Classé sous :Surface continentale, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Séisme du 30 octobre en Italie : la rupture co-sismique la plus importante jamais observée en Méditerranée sur une faille normale

21 novembre 2016 by osuadmin

Une équipe composée d’une dizaine de chercheurs provenant du CEREGE 1, de l’IPGP 2, de l’EOST 3, du LIVE4 , de Géosciences Montpellier 5 et de GeoAzur 6, en collaboration avec l’INGV et l’Université de Chieti-Pescara, s’est rendue sur le terrain en Apennin Central (Italie) sur le lieu des épicentres qui se sont succédés depuis août 2016 (24 août Mw=6, 26 octobre Mw=5.9) et dernièrement avec le séisme de Mw=6.5 près de Norcia du 30 octobre, le plus fort séisme enregistré en Italie depuis les 36 dernières années. Leurs observations montrent que ce dernier a engendré la rupture co-sismique la plus importante jamais observée en Méditerranée sur une faille normale.

Les chercheurs géologues, tectoniciens, géographes et geomaticiens, se sont succédés sur le terrain entre le 5 et le 14 novembre 2016 pour acquérir des données sur les ruptures de surface associées à ces séismes. Une partie de l’équipe s’était rendue sur le terrain entre le 11 et 16 septembre suite au séisme du 24 août. Ils avaient observé des déplacements verticaux le long de la faille du Mt Vettore de 20 à 30 cm sur une longueur de plus de 7 km (voir photo). A partir d’outils de pointe en géomatique (scanner 3D Faro, TLS LiDAR Riegl, photogrammétrie) l’équipe a acquis l’affleurement numérique 3D à très haute résolution des zones rompues le long du Mt Vettore avant le dernier séisme du 30 octobre. Les acquisitions faites au cours de cette deuxième mission ont permis de cartographier précisément les ruptures associées à ce nouveau choc et d’acquérir une nouvelle image de la topographie des zones précedemment étudiées.

Photo d’une partie de l’équipe franco-italienne rassemblant 6 laboratoires français sur la rupture co-sismique du Mt Vettore.
Crédit : Julien Point / EOST

Ces données fournissent une image sans précédent de l’évolution spatio-temporelle d’un plan de faille avant et après séisme et sont fondamentales pour comprendre le lien entre le déplacement co-sismique et la formation des reliefs topographiques associés aux failles actives.

En Italie et en Europe en général, il existe très peu d’exemples de ruptures co-sismiques visibles dans le paysage. Les observations récoltées dans le cadre de cette mission post-sismique sont donc uniques et montrent que le séisme du 30 octobre a engendré la rupture co-sismique la plus importante jamais observée en Méditerranée sur une faille normale. Le séisme de Mw=6.5 a entraîné un déplacement co-sismique vertical compris entre 1 et 2 m, localisé sur la trace morphologique de la faille du Mt. Vettore et ce sur une longueur de 7 km au minimum. La rupture co-sismique s’est produite sur la même faille et a entraîné le décalage des mêmes objets morphologiques que lors de la rupture du 24 août.

L’ensemble des partenaires a contribué au financement de cette mission qui a également bénéficié du soutien de l’INSU et du Labex OT-MED.

 

Photo prise sur le terrain montrant le glissement de 25 cm continue le long du plan de faille associé au séisme du 24 août 2016 et sur le même endroit à droite où on voit le déplacement de presque 1.8 m suite au séisme du 30 octobre. On reconnaît sur les deux photos le même bloc de roche en bas à droite. Le plan de faille s’est donc déplacé de presque 2 m au total depuis le 24 août par rapport à ce bloc de roche.
Crédit : Jim Tesson / CEREGE et Lucilla Benedetti / CEREGE

 

Rupture de surface sur la portion sud de la Faille du Mt Vettore (près de Mte Vettoreto), associée au séisme du 30 octobre, on observe environ 1 m de déplacement vertical. Crédit : Lucilla Benedetti / CEREGE

 

Sur le plan de faille du Mt Vettore près de la Cima del Redentore, ruptures co-sismiques associées à la séquence de séisme. A la base de l’escarpement cumulé (gris) on voit une trace blanche de 25 cm exhumée lors du séisme du 24 août, et en dessous la trace blanche-jaune de 2 m exhumée lors du séisme du 30 octobre.Crédit : Lucilla Benedetti / CEREGE

Rupture co-sismique associée au séisme du 30 octobre sur la faille du Mt Vettore, entre 1.5 et 2 m de déplacement vertical décalant tout sur son passage et ce sur au moins 7 km de longueur. Crédit : Lucilla Benedetti / CEREGE

1. Centre européen de recherche et d’enseignement de géosciences de l’environnement (CEREGE : CNRS / Collège de France / IRD / Université Aix Marseille)
2. Institut de physique du globe de Paris (IPGP : CNRS / IPGP / Université Paris-Diderot, Université Sorbonne Paris Cité)
3. Ecole et Observatoire des sciences de la Terre (EOST : CNRS / Université de Strasbourg)
4. Laboratoire Image, Ville, Environnement (LIVE : CNRS / Université de Strasbourg)
5. Géosciences Montpellier : CNRS / Université Antilles / Université de Montpellier
6. GéoAzur : CNRS / IRD / OCA / Université Nice Sophia Antipolis

Classé sous :Surface continentale, Terre Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Joanna Charton récompensée par le Prix de thèse AMU 2024 – Campagne 2025
  • Deux chercheurs du CEREGE participent à une étude internationale sur le rôle clé des plantons calcifiants dans le climat
  • Concours « Laisse ton empreinte »
  • Suivre la croissance complexe des structures cosmiques avec Euclid
  • L’âge du carbone des sols corrigé pour estimer sa vraie dynamique

Commentaires récents

Aucun commentaire à afficher.

Archives

  • octobre 2025
  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter