• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Univers

Proxima b, une exoplanète recouverte d’un océan ?

6 octobre 2016 by osuadmin

Une exoplanète rocheuse et d’une masse proche de celle de la Terre a récemment été détectée autour de Proxima du Centaure, l’étoile la plus proche de notre Soleil. Cette planète, baptisée Proxima b, se trouve sur une orbite qui lui permettrait d’avoir de l’eau liquide à sa surface, soulevant ainsi la question de son habitabilité. Dans une étude à paraitre dans The Astrophysical Journal Letters, une équipe internationale dirigée par des chercheurs du Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université) vient de déterminer ses dimensions et les propriétés de sa surface, qui, dans certains cas, favoriseraient effectivement son habitabilité. Selon elle, cette planète pourrait être de type « planète océan », avec un océan recouvrant toute sa surface, et une eau semblable à celle de certaines lunes glacées autour de Jupiter ou Saturne. A l’opposé, il est aussi possible que la composition de Proxima b ressemble plutôt à celle de Mercure, avec un noyau métallique représentant les deux tiers de la masse de la planète. Ces résultats serviront de base aux futures études visant à déterminer l’habitabilité de Proxima b.

Proxima du Centaure, l’étoile la plus proche du soleil, abrite un système planétaire composé d’au moins une planète. C’est en analysant et complétant d’anciennes observations qu’une telle découverte a récemment été faite, marquant ainsi le domaine de la recherche d’exoplanètes. Ces nouvelles mesures ont montré que cette planète, nommée Proxima Centauri b – ou plus simplement Proxima b –, possède une masse minimale proche de celle de la Terre (1,3 fois cette dernière) et orbite autour de son étoile à une distance de 0,05 unités astronomiques (soit un dixième de la distance Soleil-Mercure). Contrairement à ce que l’on pourrait penser, une distance aussi faible n’implique pas une température élevée à la surface de Proxima b. Comme Proxima du Centaure est une naine rouge, sa masse et son rayon ne correspondent qu’à un dixième de ceux du Soleil, et sa luminosité est mille fois plus faible que notre étoile. A une telle distance, Proxima b se trouve donc dans la zone habitable de son étoile. Elle est susceptible d’abriter de l’eau liquide à sa surface et donc d’abriter des formes de vie.

Figure 1 – Diagramme masse-rayon comparant les positions de plusieurs exoplanètes connues à celles de planètes du système solaire.
Les courbes correspondent à certaines compositions spécifiques utilisées dans le modèle de structure interne. La zone d’existence de Proxima b, dessinée en gris, prend en compte l’incertitude sur sa masse minimale et ses différentes compositions possibles. La masse réelle de Proxima b peut aussi se trouver au-delà de cette zone grisée.
Crédit : LAM

Cependant on sait très peu de choses sur Proxima b, en particulier son rayon demeure inconnu. Il est donc impossible de savoir à quoi ressemble la planète, ni de quoi elle est composée. La mesure du rayon d’une exoplanète s’effectue généralement lors d’un transit, où cette dernière éclipse son étoile. Mais un tel événement a une faible probabilité (1,5%), et plusieurs observations de l’étoile ne montrent en effet aucun signe de transit.

Il existe un autre moyen pour estimer le rayon d’une planète si l’on connaît sa masse, en simulant le comportement des matériaux qui la composent. C’est la méthode utilisée par une équipe de chercheurs Franco-Américaine issue du Laboratoire d’Astrophysique de Marseille (CNRS/Aix-Marseille Université) et du Département d’Astronomie de l’Université de Cornell. Avec l’aide d’un modèle de structure interne, ils ont exploré les différentes compositions que Proxima b pourrait présenter et en ont déduit les valeurs correspondantes du rayon de la planète. Ils ont restreint leur étude au cas de planètes potentiellement habitables en simulant des planètes denses et solides, formées d’un noyau métallique et un manteau rocheux comme dans les planètes telluriques du système solaire, tout en autorisant l’incorporation d’une importante masse d’eau dans leur composition.

Figure 2 – Comparaison des deux cas extrêmes obtenus pour Proxima b avec la Terre.
Ce schéma montre la structure interne de chaque planète. De gauche à droite : Proxima b avec le plus petit rayon atteignable (65% de noyau métallique, entouré d’un manteau rocheux séparé en deux phases), la Terre (idem avec 32,5% de noyau), et Proxima b avec le plus grand rayon autorisé (50% de manteau rocheux entouré d’une couche d’eau sous forme solide puis liquide).
Crédit : LAM

Ces hypothèses autorisent une grande diversité de compositions pour Proxima b, le rayon de la planète pouvant varier entre 0,94 et 1,40 fois le rayon de la Terre (6371 km) pour la masse minimale de cette planète. L’étude montre ainsi que Proxima b possède un rayon minimum de 5990 km, et que la seule manière d’obtenir cette valeur est d’avoir une planète très dense, composée d’un noyau métallique d’une masse valant 65% de celle de la planète, le reste étant un manteau rocheux (formé de silicates) présent jusqu’en surface. La frontière entre ces deux matériaux est alors située à environ 1500 km de profondeur. Avec une telle composition, Proxima b serait très proche de la planète Mercure, qui présente elle aussi un noyau métallique très massif. Ce premier cas n’exclut cependant pas la présence d’eau à la surface de la planète, comme sur Terre où la masse d’eau ne dépasse pas 0,05% de la masse de la planète. A l’opposé, Proxima b peut aussi présenter un rayon maximal de 8920 km, à condition qu’elle soit composée à 50% de roches entourées de 50% d’eau. Dans ce cas, Proxima b serait recouverte d’un unique océan liquide de 200 km de profondeur. En-dessous, la pression serait tellement forte que l’eau liquide se transformerait en glace à haute pression, avant d’atteindre la limite avec le manteau à 3100 km de profondeur. Dans ces deux cas extrêmes, une fine atmosphère gazeuse pourrait englober la planète, comme sur Terre, rendant Proxima b potentiellement habitable.

De tels résultats apportent des informations complémentaires importantes aux différents scénarios de formation qui ont été proposés pour Proxima b. Certains impliquent une planète complètement sèche, tandis que d’autres autorisent la présence d’une quantité significative d’eau dans sa composition. Les travaux de l’équipe de chercheurs permettent d’avoir une estimation du rayon de la planète dans chacun de ces scénarios. De même, cela permet de restreindre la quantité d’eau disponible sur Proxima b, qui est sujette à une évaporation sous l’influence des rayons ultraviolets et X de l’étoile hôte, qui sont beaucoup plus violents que ceux issus du Soleil.

De futures observations de Proxima du Centaure permettront d’affiner cette étude à l’avenir en précisant la masse de la planète. Par ailleurs, la mesure des abondances stellaires en éléments lourds (Mg, Fe, Si…) diminuera le nombre de compositions possibles pour Proxima b, permettant une détermination encore plus précise du rayon de Proxima b.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Du nouveau sur la formation des galaxies géantes

30 septembre 2016 by osuadmin

Dans un article qui vient d’être publié dans « Astronomy and Astrophysics », une équipe internationale impliquant des chercheurs du Laboratoire d’Astrophysique de Marseille (CNRS/Université Aix-Marseille) étudient Malin 1, une galaxie proche connue seulement depuis les années 80 et exhibant un très grand disque de gaz et d’étoiles. Les observations de Malin 1, un parfait prototype des « galaxies géantes à faible brillance de surface », ont permis aux scientifiques de réaliser une découverte inattendue qui remet en cause une des hypothèses sur les processus de formation des galaxies de ce type.

En raison de leur aspect diffus et de leur très faible brillance, ces galaxies pourtant massives sont difficiles à observer et restent méconnues aujourd’hui. Elles pourraient constituer une fraction importante des galaxies dans l’univers, d’autant que des objets semblables à Malin 1 pourraient avoir échappé à notre vigilance. Il est donc indispensable de les étudier et de comprendre leur formation et leur évolution. Cela devient maintenant possible grâce aux télescopes et détecteurs modernes, plus sensibles aux faibles brillances de surface.

Cet article présente pour la première fois des images de Malin 1 obtenues à six longueurs d’onde différentes (allant de l’ultraviolet grâce au projet GUViCS 1 à l’optique et l’infra-rouge proche grâce au projet NGVS mené avec la caméra MegaCam du Canada France Hawaï Telescope, CFHT). A l’origine planifié pour étudier l’amas de la Vierge, ces grandes campagnes d’observations nous permettent aussi de travailler sur d’autres objets situés en arrière-plan de cet amas, comme c’est le cas dans cette étude.

Combinaison des 4 images NGVS de Malin 1, obtenues avec la caméra MegaCam sur le télescope CFHT
Une indication de l’échelle est donnée dans la figure pour montrer la taille incroyable du disque de la Galaxie (Le diamètre de notre Galaxie est plutôt de 30 kpc).
Crédit : Boissier/A&A/ESO

Ces images nous offrent une nouvelle vue de Malin 1, le plus grand disque galactique connu dans l’univers. Son diamètre dépasse 250 kilo-parsec (en comparaison, celui de notre Galaxie est « seulement » d’une trentaine de kilo-parsec). Les chercheurs ont extrait de ces données la variation de la luminosité avec la distance au centre de la galaxie, ainsi que la variation des « couleurs » de la galaxie (c’est à dire des rapports de luminosité aux différentes longueurs d’ondes). Celles-ci dépendent fortement de l’histoire de la galaxie. La comparaison de ces résultats observationnels aux prédictions de différents modèles numériques a donc permis à l’équipe d’estimer pour la première fois quelle à du être l’histoire de la formation stellaire. Elle suggère que le disque géant de Malin 1 est en place depuis plusieurs milliards d’années, et que des étoiles s’y forment à un rythme modeste mais régulier sur le long-terme.

La courbe avec les barres d’erreur montre la variation avec le rayon de la couleur entre les 2 bandes de GALEX (FUV et NUV). Cette différence est sensible aux populations stellaires jeunes. La courbe bleue et rouge montre le modèle utilisé dans l’article : il est en accord avec ces observations. Au contraire, la ligne orange montre la couleur d’étoiles qui se seraient formées lors d’une interaction il y a 1.4 milliards d’années, ou bien d’une formation d’étoile qui se serait déplacée du centre vers l’extérieur depuis cette période (étoiles). Ces scénarios sont clairement contredit par les nouvelles observations.
Crédit : Adapted from Boissier et al.

Ce résultat est important et surprenant, car il contredit un scénario proposé il y a quelques années, selon lequel ces galaxies géantes sont formées lors d’interactions violentes. Il semble à présent exclu par les nouvelles données. Dans le contexte cosmologique de la formation des galaxies, on s’attend à de nombreuses interactions et fusions qui devraient perturber le disque de Malin 1. La formation d’une telle structure, et de sa survie dans ce contexte, offre donc un nouveau défi pour les simulations cosmologiques de formation des galaxies.

Variation avec le rayon de la densité de surface d’étoiles et de gaz déduite d’observations (noir) et du modèle présenté dans l’article (rouge).
Crédit : Boissier/A&A/ESO
La courbe rouge montre l’histoire du taux de formation stellaire (SFR) dans le disque géant de Malin 1 d’après le modèle discuté dans l’article qui reproduit correctement les densités de surface d’étoiles et les couleurs de la galaxie. Cette histoire suggère une formation étalée sur plusieurs milliards d’années. (La barre d’erreur indique une estimation du taux de formation stellaire actuel, estimé dans une étude plus ancienne).
Crédit : Adapted from Boissier et al.

Que va-t-il advenir de Malin 1 ? Le disque géant contenant une grande fraction de gaz, la formation d’étoiles va probablement continuer à se produire à un rythme modeste pendant des milliards d’années, lui permettant d’accroire encore sa masse d’étoiles. A moins que d’ici là, une autre galaxie ne vienne perturber la géante, et pourquoi pas fusionner avec elle pour totalement changer sa destinée. Les galaxies candidates sont cependant peu nombreuses car Malin 1 réside dans un recoin relativement isolé de notre univers proche.

1. A propos des projets qui ont permis ce travail : NGVS et GUViCS sont deux grands projets qui ont obtenu des observations profondes de l’ensemble de l’amas de la vierge (plus de 100 degrés carrés) respectivement en visible/infrarouge (au CFHT) et en ultraviolet (avec le télescope GALEX). Ces projets avaient pour but de scruter les centaines de galaxies de l’amas, et d’étudier les phénomènes liés à cette structure. Ils permettent cependant beaucoup d’autres études, par exemple des galaxies en arrière-plan. C’est le cas de Malin 1 qui se trouve dans cette direction du ciel, mais à 366 Mega-parsec de nous, alors que l’amas de la Vierge est à 17 mega-parsec.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Le laboratoire d’astrophysique de marseille et la mission rosetta

30 septembre 2016 by osuadmin

  • Le LAM et les comètes, une longue histoire

Le LAM a participé très activement à la mission Rosetta notamment par la fourniture de la caméra à haute résolution OSIRIS-NAC, mais Marseille et les comètes c’est une longue histoire. Dès le 19e siècle, les astronomes marseillais s’illustrent dans l’étude de ces objets. Citons Pons (37 comètes découvertes, record mondial, dont 23 à Marseille), Gambart (12 comètes), Tempel (17 comètes), Coggia (6 comètes), Stéphan (5 comètes) et Borrelly (13 comètes), la ville détenant à ce jour le record mondial du nombre de comètes détectées visuellement. Et consécration, en 1913 l’Union Astronomique Internationale choisit Marseille comme centre international des « petites planètes ». Plus récemment, le LAM a participé à la première mission spatiale « GIOTTO » de l’Agence Spatiale Européenne (ESA) qui rencontra la comète Halley en 1986. Ces vingt dernières années, le coronographe LASCO-C2 conçu et réalisé par le LAM et embarqué sur l’observatoire solaire SOHO de l’ESA a découvert plus de trois mille comètes dites rasantes qui frôlent le Soleil. Grâce à une technique originale mise au point par P. Lamy, chercheur CNRS au LAM, de nombreux noyaux cométaires ont été détectés et caractérisés à l’aide des grands télescopes spatiaux, Hubble et Spitzer, dont celui de la comète 67P/ Churyumov-Gerasimenko familièrement baptisée « Tchouri », la cible de la mission Rosetta, fournissant ainsi les caractéristiques physiques et un premier modèle du noyau, informations indispensables au succès de cette mission.

 

  • La caméra OSIRIS-NAC : les yeux aiguisés de la sonde Rosetta

Dès la sélection de la mission Rosetta par l’ESA, le LAM a étudié en parallèle trois instruments, la caméra OSIRIS-NAC – sa réalisation phare – ainsi que l’ensemble de caméras panoramiques CIVA (destiné au module PHILAE) et le détecteur de poussières GIADA et s’est rapproché de plusieurs laboratoires internationaux en vue de former les équipes instrumentales. OSIRIS-NAC, l’imageur à haute résolution de Rosetta, met en œuvre des concepts optiques et mécaniques innovants qui se sont concrétisés par une réalisation en partenariat avec la société ASTRIUM et plusieurs laboratoires européens. Lors de la phase de croisière de la mission, la caméra OSIRIS-NAC a fourni des dizaines d’images des astéroïdes Steins et Lutétia. En février 2014, elle prenait les premières images de « Tchoury » et révélait sa forme étrange dite bilobée. Depuis et jusqu’à la fin de la mission le 30 septembre 2016, c’est plus de mille images qui ont été obtenues révélant l’incroyable complexité de la surface du noyau et des processus qui la sculpte.

Le LAM a participé à la sélection du site d’atterrissage du module Philae en fournissant des modèles 3D de la surface de la comète reconstruits à partir des images obtenues par la caméra OSIRIS-NAC. Ces modèles ont joué un rôle important en permettant d’identifier les fortes pentes risquant de déstabiliser Philae lors de son atterrissage. Plusieurs modèles 3D ont ensuite été calculés, permettant de déterminer pour la première fois de manière très précise la densité d’une comète, égale à environ la moitié de la densité de la glace d’eau. Cette densité très faible implique une porosité extrêmement élevée puisqu’environ les trois quarts du volume du noyau seraient en fait constitué de vide.

L’observation d’une comète de façon quasi continue pendant plus de 2 ans, de août 2014 à septembre 2016, suivant sa course dans le système solaire et son passage au plus près du soleil en août 2015 à moins de 200 millions de km, est un des grands succès de Rosetta. Ces observations sans précédent ont permis de détecter de nombreuses morphologies à la surface du noyau, diverses et variées, depuis des terrains lisses et plats jusqu’à des falaises « rocheuses » et escarpées, en passant par de larges zones d’éboulis ou d’autres couvertes de structures polygonales. Les images montrent que ces terrains évoluent et s’érodent par endroit au cours du temps, sous l’influence du rayonnement solaire, des fortes variations de température diurnes et saisonnières, et de l’activité (c.-à-d. dégazage) de la comète, façonnant un paysage aux apparences ruiniformes. Ces découvertes interrogent les scientifiques sur les processus qui ont formé la comète il y a 4,5 milliards d’années et sur son évolution depuis, plusieurs scénarios étant débattus.

 

  • La quête de Philae

Si le 11 novembre 2014 PHILAE a bien touché la surface du noyau à quelques mètres de l’endroit prévu, la défaillance d’un système mécanique l’a conduit à rebondir plusieurs fois et à finalement se poser en un point inconnu, loin du site initial. S’en est suivi une longue recherche qui a mobilisé les différentes équipes et agences impliquées. La tâche était d’autant plus ardue que vu sa taille, PHILAE ne pouvait apparaitre que comme un minuscule point brillant sur les images OSIRIS-NAC. C’était donc rechercher une aiguille dans une botte de foin ! C’est finalement l’équipe du LAM associée à celles du CNES et de l’IRAP (Toulouse) qui a détecté le bon point brillant parmi des dizaines d’autres au début de l’année 2015, son absence sur des images similaires obtenues avant l’atterrissage de PHILAE fournissant un critère irréfutable. Le 25 mai 2016, Rosetta s’étant suffisamment rapprochée du noyau, les images OSIRIS-NAC ont permis de reconnaitre PHILAE et de confirmer sans ambiguïté possible le site trouvé par l’équipe du LAM un an et demi auparavant.

Classé sous :Univers Balisé avec :Communiqué de presse

Un impact géant : le mystère de l’origine des lunes de Mars enfin percé

1 juillet 2016 by osuadmin

D’où viennent Phobos et Deimos, les deux petits satellites naturels de Mars ? Longtemps, leur forme a fait croire qu’ils étaient des astéroïdes capturés par Mars. Cependant la forme et l’orientation de leur orbite contredisent cette hypothèse. Deux études indépendantes et complémentaires apportent une réponse à cette question. Dans l’une, sous presse dans The Astrophysical Journal, des chercheurs majoritairement du CNRS et d’Aix-Marseille Université 1 excluent la capture d’astéroïdes et montrent que le seul scénario compatible avec les propriétés de surface de Phobos et Deimos est celui d’un impact géant. Dans l’autre étude, grâce à des simulations numériques de pointe, une équipe belgo-franco-japonaise montre comment ces satellites ont pu se former à partir des débris d’une collision titanesque entre Mars et un embryon de planète trois fois plus petit. Ces travaux, fruit d’une collaboration entre des chercheurs de l’Université Paris Diderot et de l’Observatoire royal de Belgique, en collaboration avec le CNRS, l’Université de Rennes 1 2 et l’institut japonais ELSI, sont publiés le 4 juillet 2016 dans la revue Nature Geoscience.

L’origine des deux lunes de Mars, Phobos et Deimos, restait un mystère. Par leur petite taille et leur forme irrégulière, elles ressemblent beaucoup à des astéroïdes, mais on ne comprend pas comment Mars aurait pu les « capturer » pour en faire des satellites en orbite presque circulaire, dans le plan équatorial de la planète. Selon une théorie concurrente, Mars aurait subi à la fin de sa formation un impact géant avec un embryon de planète ; mais pourquoi les débris d’un tel impact auraient-ils formé deux petits satellites plutôt qu’une énorme lune, comme celle de la Terre ? Une troisième possibilité serait que Phobos et Deimos se soient formés en même temps que Mars, ce qui impliquerait qu’ils aient la même composition que leur planète ; cependant, leur faible densité semble contredire cette hypothèse. Aujourd’hui, deux études indépendantes viennent conforter la théorie de l’impact géant.

Dans l’une d’elles, une équipe de recherche belgo-franco-japonaise propose pour la première fois un scénario complet et cohérent de formation de Phobos et Deimos, qui seraient nés des suites d’une collision entre Mars et un corps primordial trois fois plus petit, 100 à 800 millions d’années après le début de la formation de la planète. Selon ces chercheurs, les débris de cette collision auraient formé un disque très étendu autour de Mars, formé d’une partie interne dense, composée de matière en fusion et d’une partie externe très fine, majoritairement gazeuse. Dans la partie interne de ce disque se serait d’abord formée une lune mille fois plus massive que Phobos, aujourd’hui disparue. Les perturbations gravitationnelles créées dans le disque externe par cet astre massif auraient catalysé l’assemblage de débris pour former d’autres petites lunes plus lointaines. Au bout de quelques milliers d’années, Mars se serait alors retrouvée entourée d’un cortège d’une dizaine de petites lunes et d’une énorme lune. Plusieurs millions d’années plus tard, une fois le disque de débris dissipé, les effets de marée avec Mars auraient fait retomber sur la planète la plupart de ces satellites, dont la très grosse lune. Seules ont subsisté les deux petites lunes les plus lointaines, Phobos et Deimos (voir l’infographie en fin de communiqué).

À cause de la diversité des phénomènes physiques mis en jeu, aucune simulation numérique n’est capable de modéliser l’ensemble du processus. L’équipe de Pascal Rosenblatt et Sébastien Charnoz a dû alors combiner trois simulations de pointe successives pour rendre compte de la physique de l’impact géant, de la dynamique des débris issus de l’impact et de leur assemblage pour former des satellites, et enfin de l’évolution à long terme de ces satellites.

Dans l’autre étude, des chercheurs du Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université) excluent la possibilité d’une capture, sur la base d’arguments statistiques et en se fondant sur la diversité de composition des astéroïdes. De plus, ils montrent que la signature lumineuse émise par Phobos et Deimos est incompatible avec celle du matériau primordial qui aurait pu former Mars (des météorites de la classe des chondrites ordinaires, des chondrites à enstatite et/ou des angrites). Ils s’attachent donc au scénario de l’impact. Ils déduisent de cette signature lumineuse que les satellites sont composés de poussières fines (de taille inférieure au micromètre ).

Or, la très petite taille des grains à la surface de Phobos et Deimos ne peut pas être expliquée uniquement comme la conséquence d’une érosion due au bombardement par les poussières interplanétaires, d’après ces chercheurs. Cela signifie que les satellites sont composés dès l’origine de grains très fins, qui ne peuvent se former que par condensation du gaz dans la zone externe du disque de débris (et non à partir du magma présent dans la zone interne). C’est un point sur lequel s’accordent les deux études. Par ailleurs, une formation des lunes de Mars à partir de ces grains très fins pourrait être responsable d’une forte porosité interne, ce qui expliquerait leur densité étonnamment faible.

La théorie de l’impact géant, corroborée par ces deux études indépendantes, pourrait expliquer pourquoi l’hémisphère nord de Mars a une altitude plus basse que le sud : le bassin boréal est sans doute la trace d’un impact géant, comme celui qui a in fine donné naissance à Phobos et Deimos. Elle permet aussi de comprendre pourquoi Mars a deux satellites et non un seul comme notre Lune, aussi née d’un impact géant. Ce travail suggère que les systèmes de satellites formés dépendent de la vitesse de rotation de la planète, puisqu’à l’époque la Terre tournait très vite sur elle-même (en moins de quatre heures) alors que Mars tournait six fois plus lentement.

De nouvelles observations permettront bientôt d’en savoir plus sur l’âge et la composition des lunes de Mars. En effet, l’agence spatiale japonaise (JAXA) a décidé de lancer en 2022 une mission, baptisée Mars Moons Exploration (MMX), qui rapportera sur Terre en 2027 des échantillons de Phobos. L’analyse de ces échantillons pourra confirmer ou infirmer ce scénario. L’Agence spatiale européenne (ESA), en association avec l’agence spatiale russe (Roscosmos), prévoit une mission similaire en 2024.

Ces recherches ont bénéficié du soutien de l’IPGP, du Labex UnivEarthS, d’ELSI, de l’Université de Kobe, et de l’Idex A*MIDEX.

Chronologie des événements qui auraient donné naissance à Phobos et Deimos.
Mars est percutée par une protoplanète trois fois plus petite (1). Un disque de débris se forme en quelques heures. Les briques élémentaires de Phobos et Deimos (grains de taille inférieure au micromètre) se condensent directement à partir du gaz dans la partie externe du disque (2). Le disque de débris produit rapidement une lune proche de Mars, qui s’éloigne et propage ses deux zones d’influence comme des vagues (3), ce qui provoque en quelques millénaires l’accrétion des débris plus éloignés en deux petites lunes, Phobos et Deimos (4). Sous l’effet des marées soulevées par Mars, la grosse lune retombe sur la planète en quelques millions d’années (5), tandis que Phobos et Deimos, moins massifs, rejoignent leur position actuelle dans les milliards d’années qui suivent (6).
Crédit : Antony Trinh / Observatoire Royal de Belgique
Vue d’artiste de l’impact géant qui aurait donné naissance à Phobos et Deimos et au bassin d’impact Boréalis.
L’impacteur devait faire environ le tiers de la taille de Mars. A cette époque, Mars était jeune et possédait peut-être une atmosphère plus épaisse et de l’eau liquide en surface.
Crédit : Université Paris Diderot / Labex UnivEarthS
1. Laboratoires français impliqués : Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université), Institut de planétologie et d’astrophysique de Grenoble (CNRS/Université Grenoble Alpes), Centre européen de recherche et d’enseignement de géosciences de l’environnement (CNRS/Aix-Marseille Université/IRD/Collège de France).
2. Laboratoires français impliqués : Institut de physique du globe de Paris (CNRS/IPGP/Université Paris Diderot), Institut de physique de Rennes (CNRS/Université de Rennes 1).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Suivez le transit de Mercure en direct le 9 mai à partir de 13h15

9 mai 2016 by osuadmin

C’est un évènement exceptionnel : la planète Mercure passera devant le Soleil ce lundi 9 mai 2016.
Le transit de mercure
Il se produit lorsque la planète Mercure se situe entre la Terre et le Soleil. Elle est alors visible sous la forme d’un petit point noir traversant le disque solaire.

Les astrophysiciens nomment cela un « transit ». On parle de transit planétaire lorsqu’une planète passe devant le Soleil. Vu depuis la Terre, seuls les transits de Mercure et de Vénus sont observables. Les transits planétaires sont beaucoup plus rares que les éclipses de Soleil par la Lune, il y aura 14 passages de Mercure dans notre siècle.

L’Observatoire de Haute‐Provence – OSU Institut Pythéas (CNRS‐AMU) pointera pour l’occasion le télescope IRIS (destiné à l’initiation à la recherche en astronomie pour les scolaires) et pour la toute première fois, retransmettra en direct via internet les images du transit ou directement à partir du site web de l’Observatoire. Ces images sont accessibles à tous. Si la météo est favorable, vous pourrez observer le passage de Mercure devant le Soleil entre 13h12 et 20h40.

Cette retransmission permet d’assister à ce rare phénomène sans aucun risque. En effet, l’observation du Soleil doit se faire impérativement avec une protection adéquate. Ne jamais observer le Soleil à l’œil nu ou au travers de n’importe quel autre instrument optique sans vous être assurés qu’il est équipé de protection/filtre aux normes.

Le télescope IRIS sous sa coupole

En parallèle de cette diffusion, d’autres activités à destination des collégiens et des lycéens sont prévues sur le site de l’Observatoire. Cinq visioconférences interactives pourront être visionnées directement dans les classes des établissements scolaires des académies d’Aix‐Marseille, Nice et Montpellier, ainsi que dans toute la France pour les classes du réseau « Astro à l’école » (dispositif ministériel). Grâce à la plateforme en ligne opérée par le Rectorat d’Aix‐Marseille, une centaine de classes pourront ainsi participer, soit plus de 3 000 élèves.

Lors de cet évènement, un stage de formation de professeurs de l’enseignement secondaire organisé par le rectorat d’Aix‐Marseille en partenariat avec l’Observatoire de Haute‐Provence portera sur le thème du transit de Mercure et permettra aux enseignants d’en aborder les aspects théoriques : Quel est l’intérêt scientifique des transits ? Comment mesure‐t‐on les distances dans l’Univers ? Quelles sont les techniques d’observation de transit d’exoplanètes ? Etc.

Classé sous :Univers Balisé avec :Communiqué de presse

Fusion majeure de deux galaxies spirales : Destruction et reconstruction des disques galactiques

15 avril 2016 by osuadmin

Un groupe de chercheurs et d’ingénieurs informaticiens du Laboratoire d’Astrophysique de Marseille (LAM / CNRS – Université d’Aix Marseille) a effectué des simulations 1 spécifiques utilisant des ordinateurs nationaux de type « supercalculateurs » pour étudier le résultat d’une fusion de deux galaxies à disque de masses environ égales et situées à des redshifts intermédiaires – entre z 1.5 et 0.5). Les résultats particulièrement intéressants de cette étude ouvrent une toute nouvelle perspective pour la formation des disques galactiques.

La formation des galaxies comme notre Voie Lactée compte parmi les plus grandes questions auxquelles les astronomes tentent de répondre. Le processus est toutefois difficile à observer. En revanche, des simulations utilisant des super-ordinateurs nationaux permettent aux scientifiques de comprendre les processus mis en jeu dans la formation des galaxies. Une équipe du Laboratoire d’Astrophysique de Marseille travaille sur ces modélisations. Une de leurs thématiques de recherche consiste à mettre en évidence le fruit de collisions de galaxies aux caractéristiques très spécifiques. Ils ont ainsi simulé la collision de deux galaxies à disque de masses environ égales et situées à des redshifts intermédiaires (entre z 1.5 et 0.5). Les deux galaxies avant collision représentent au mieux des galaxies situées à ces redshifts, étant plus petites et plus riches en gaz que les galaxies qui sont proches de nous. Point important, leurs halos sont constitués tant de matière noire que de gaz chaud.

Le disque d’une galaxie formée lors d’une fusion majeure vu de face (en haut) et par la tranche (en bas).
On y remarque tant des spirales internes que des spirales externes, ainsi qu’une barre et un bulbe en forme de boite. Les images de gauche représentent la totalité du disque, tandis que les images de droite sont un agrandissement de la partie centrale.
Crédit : LAM

L’évolution au cours de la fusion est la suivante :

  • Lors de la collision, les disques de ces galaxies sont détruits et leurs étoiles, subissant une relaxation violente, forment un bulbe classique, qui sera le centre de la nouvelle galaxie.
  • La majorité des étoiles se formant vers la fin de la période de collision ou juste après forment un disque épais.
  • Ensuite, un nouveau disque, mince et froid, commence à se former principalement par accrétion du gaz initialement dans le halo.

Ainsi une nouvelle galaxie se forme, et les simulations obtenues par cette équipe montrent que les étoiles les plus vieilles doivent se trouver dans le bulbe classique, suivies par les étoiles du disque épais et enfin par les étoiles du disque mince. Les étoiles les plus jeunes se trouvent dans les bras spiraux, et au centre dans un second bulbe (non classique), en forme de disque.

Grâce à ces simulations, les différentes étapes de l’évolution de la nouvelle galaxie, depuis sa formation lors de la fusion jusqu’au temps présent (z=0), ont pu être observées. La très haute résolution des simulations a non seulement permis des comparaisons détaillées des propriétés de ces galaxies simulées avec celles des galaxies observées, mais a de plus mis en évidence une parfaite adéquation avec ce que nous pouvons observer dans notre univers local 2. En particulier, la distribution de la masse et la distribution des vitesses correspondent bien.

La morphologie des structures du disque est également en très bon accord avec les observations, montrant un disque épais en plus du disque mince, des spirales et des anneaux de la bonne taille et forme, et une barre avec des anses aux deux extrémités, et, vu de profil, un bulbe en forme de boite ou de cacahuète. Il est également à noter que les galaxies spirales ainsi formées peuvent avoir un bulbe classique avec une masse très faible, pouvant même être inférieure à 10% de la matière baryonique totale, ce qui est requis par exemple par les observations de notre Galaxie.

Lia Athanassoula, astronome au LAM et premier auteur de cette étude conclut : « Nos simulations démontrent que la fusion de deux galaxies spirales peut donner naissance à une nouvelle galaxie spirale. Ce résultat particulièrement intéressant met donc en évidence un scénario possible pour la formation des galaxies semblables à la nôtre. A partir de là nous allons pouvoir étudier les plus importantes propriétés des galaxies à disque. »

1. Des simulations N-corps avec hydrodynamique.
2. En particulier, la courbe de rotation est plate dans les parties extérieures et pas trop concentrée dans les parties centrales, grâce à la modélisation dans les simulations du noyau actif de la galaxie. Également le profil radial de la densité projetée, qui est — d’après la nomenclature des observateurs — de Type II, avec des valeurs réalistes pour les longueurs d’échelle tant intérieure qu’extérieure et pour le rayon qui sépare le disque intérieur et extérieur.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Pages provisoires omises …
  • Page 25
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter