• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Univers

Une super-Terre dans la zone habitable d’une étoile proche

30 janvier 2025 by osuadmin

Cette découverte a été réalisée grâce à la méthode des vitesses radiales, qui détecte les infimes oscillations d’une étoile causées par la gravité d’une planète en orbite. Plus de 20 ans de données recueillies par les instruments HARPS et ESPRESSO, situés au Chili, ont été analysées pour identifier cette planète. C’est grâce à un travail très minutieux d’analyse de données d’archives, suivi de programme haute cadence de deux ans que la présence de la planète a pu être confirmée.

Plusieurs instruments sont en train d’être développés pour parvenir d’ici 2040 à observer l’atmosphère d’exoplanètes de type terrestres. HD 20794 d, avec une masse 5,8 fois supérieure à celle de la Terre et une orbite de 647 jours, sera une cible de choix pour étudier l’atmosphère des planètes terrestres et y chercher des traces de vie. Ces observations permettront en particulier de déterminer s’il s’agit d’une planète rocheuse ou gazeuse.

La zone habitable du système HD 20794
La zone habitable du système HD 20794 © UNIGE

Classé sous :Univers Balisé avec :Résultat scientifique

Ammoniac et dioxyde de carbone : une nouvelle clé pour décrypter l’océan caché du satellite Europe

14 janvier 2025 by osuadmin

Classé sous :Univers Balisé avec :Brève

Bonne année 2025 !

8 janvier 2025 by osuadmin

https://news.osupytheas.fr/wp-content/uploads/sites/2/2025/01/carte_de_voeux-OSU-light-1.mp4

Classé sous :Biodiversité, Biologie, Chimie, Écologie, Environnement, Océan, Terre, Univers Balisé avec :Brève

Prix de l’Académie des Sciences, des Lettres et des Arts pour Alain Origné

16 décembre 2024 by osuadmin

Alain Origné, ancien ingénieur optique au LAS puis au LAM, s’est vu discerner le prix Charles Bortoli 2024 de l’Académie des Sciences, des Lettres et des Arts de Marseille pour son livre Le Canigó, une île éphémère en Provence (Editions Trabucaire, 2023). Ce livre raconte, en provençal et en français, l’histoire de la découverte de ce phénomène atmosphérique
permettant l’observation du Canigou depuis les collines provençales. Il donne les explications théoriques du phénomène, joliment illustrés, mais, surtout, le livre est truffé des magnifiques photos prises par Alain lui-même, témoins de toute la rigueur et la compétence en optique instrumental qui le caractérisa durant toute sa carrière parmi nous jusqu’à son départ à la
retraite en 2016. Après la participation aux manips mythiques comme Hipparcos, Hubble et ISO, il a notamment mené des activités d’assemblage, intégration et test pour Rosetta, Herschel, SPHERE et Euclid.

Classé sous :Univers Balisé avec :Distinction

Quand la nébuleuse protosolaire forgeait les briques de la vie

5 décembre 2024 by osuadmin

Classé sous :Univers Balisé avec :Brève

DESI dévoile un nouvel éclairage sur la gravité et l’expansion de l’Univers

21 novembre 2024 by osuadmin

La gravité a façonné notre cosmos et sous l’effet de sa force attractive, de minuscules différences de densité dans la distribution de matière dans l’Univers primitif ont évolué pour former les galaxies et les grandes structures cosmiques que nous observons aujourd’hui. Une nouvelle étude utilisant les données du “Dark Energy Spectroscopic Instrument” (DESI, l’instrument spectroscopique de l’énergie noire) a retracé la manière dont ces structures se sont développées au cours des 11 derniers milliards d’années, fournissant ainsi le test le plus précis à ce jour de la gravité à très grande échelle. 

Cette nouvelle étude de la collaboration est présentée dans plusieurs articles publiés aujourd’hui sur le dépôt en ligne arXiv et présentés ici. Elle vise à tester la validité de la théorie de la gravité d’Einstein, la relativité générale, aux échelles cosmologiques dont des modifications ont été proposées comme alternatives à l’énergie noire pour expliquer l’accélération de l’expansion de l’Univers. La collaboration international DESI qui réunit plus de 900 chercheurs et chercheuses issus de plus de 70 institutions à travers le monde est gérée par le Lawrence Berkeley National Laboratory (Berkeley Lab)

DESI cartographie des millions de galaxies
19.11.2024
Dans cette vidéo à 360 degrés, embarquez pour un vol interactif à travers des millions de galaxies, cartographiées à l’aide des observations de DESI. Credit: Fiske Planetarium, CU Boulder and DESI collaboration

 

Ainsi, le mécanisme à l’origine de cette expansion accélérée est étudié avec deux approches. La première consiste à supposer l’existence d’un nouveau constituant de l’Univers, l’énergie noire, dont on cherche à déterminer les propriétés, en particulier si celles-ci évoluent avec le temps ou sont constantes. La deuxième approche propose des modèles de gravité modifiée par rapport à la relativité générale pour expliquer l’accélération de l’expansion de l’Univers sans énergie noire.

Dans cette nouvelle étude co-dirigée par Pauline Zarrouk, cosmologiste CNRS au Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), les chercheurs de la collaboration DESI ont observé que la gravité se comporte en adéquation avec la théorie de la relativité générale d’Einstein. Ce résultat valide donc le modèle de référence de l’Univers et limite les extensions possibles à la relativité générale. « La relativité générale a été abondamment et précisément testée à l’échelle des systèmes stellaires, mais il fallait également vérifier que notre hypothèse fonctionne à des échelles beaucoup plus grandes », explique Pauline Zarrouk. « La mesure statistique des vitesses des galaxies au cours de l’histoire de l’Univers nous permet de tester directement la théorie de la gravité. C’est la première fois que nous menons cette nouvelle analyse complexe avec DESI pour retracer l’histoire de la croissance des structures cosmiques. Nos résultats montrent que, jusqu’à présent, nous sommes en accord avec ce que prédit la relativité générale aux échelles cosmologiques.»

Animation : comment la gravité affecte la position des galaxies observées
19.11.2024
Cette simulation montre comment la gravité affecte la position des galaxies observées, modifiant ainsi la façon dont la matière s’agglomère pour former les structures cosmiques. Comme différents modèles de gravité prédisent différentes formations des structures, les scientifiques de DESI peuvent comparer les observations avec les prédictions et ainsi tester la gravité aux échelles cosmiques. Credit: Claire Lamman et Michael Rashkovetskyi / DESI collaboration

 

Les résultats publiés aujourd’hui constituent une analyse approfondie des données de la première année de DESI, qui ont permis d’établir en avril la plus grande carte en 3D de l’Univers à ce jour et de révéler des indices d’une évolution possible de l’énergie noire au fil du temps. Les résultats d’avril portaient sur une caractéristique particulière dans la distribution spatiale des galaxies, connue sous le nom d’oscillations acoustiques de baryons (BAO). La nouvelle analyse élargit le champ d’application afin d’extraire davantage d’informations des données, en mesurant la manière dont les galaxies et la matière sont réparties à différentes échelles dans l’espace. L’étude a nécessité des mois de travail supplémentaire et de vérifications croisées. Comme l’étude précédente, elle a utilisé une technique permettant de cacher le résultat aux scientifiques jusqu’à la fin, pour écarter tout biais inconscient dans les analyses.

L’analyse complexe a porté sur près de 6 millions de galaxies et de quasars situés entre 1 et 11 milliards d’années-lumière de la Terre. Avec seulement un an de données, DESI a réalisé la mesure globale la plus précise de la croissance des structures cosmiques, surpassant les efforts précédents qui avaient pris des décennies. « Grâce à cette manne de données et l’amélioration de nos analyses, les résultats obtenus avec cette première année de données sont spectaculaires », a déclaré Arnaud de Mattia, cosmologiste au CEA Paris-Saclay et co-responsable du groupe DESI chargé d’interpréter les données cosmologiques. « Nous testons avec une précision inégalée l’effet de l’énergie noire et la relativité générale aux échelles cosmiques. »

 

Cette figure montre les mesures de croissance des structures cosmiques en fonction du décalage spectral, obtenues avec les données de DESI collectées pendant sa première année. La courbe noire en tirets montre la prédiction de la relativité générale et les autres courbes en couleur représentent des modifications de la relativité générale avec une gravité plus ou moins forte par rapport à la relativité générale. Credit : Héctor Gil-Marin et Pauline Zarrouk / DESI collaboration
Cette figure montre les mesures de croissance des structures cosmiques en fonction du décalage spectral, obtenues avec les données de DESI collectées pendant sa première année. La courbe noire en tirets montre la prédiction de la relativité générale et les autres courbes en couleur représentent des modifications de la relativité générale avec une gravité plus ou moins forte par rapport à la relativité générale. Credit : Héctor Gil-Marin et Pauline Zarrouk / DESI collaboration

 

L’étude a également fourni de nouvelles limites supérieures à la masse des neutrinos, les seules particules fondamentales dont la masse n’a pas encore été mesurée avec précision. Les expériences de physique des particules sur les neutrinos montrent que la somme des masses des trois types de neutrinos doit être comprise entre 0,06 eV/c2 et 1,35 eV/c2 (environ un million de fois plus léger qu’un électron). Dans le cadre du modèle cosmologique standard où l’énergie noire est décrite par une constante cosmologique, les résultats de DESI indiquent que la somme devrait être inférieure à 0,07 eV/c2 (à 95% de probabilité), laissant ainsi une fenêtre étroite pour les masses des neutrinos. “Cependant, les résultats de DESI peuvent être également interprétés dans un modèle cosmologique où l’énergie noire peut varier au cours du temps comme tendent à l’indiquer les observations récentes.” précise Etienne Burtin, physicien au CEA Paris-Saclay et qui a co-dirigé le groupe d’analyse des données de DESI. “Dans ce cadre, la limite supérieure obtenue, 0,19 eV/c2, est certes plus élevée mais elle dépend beaucoup moins du modèle cosmologique utilisé et reste plus contraignante que les expériences de physique des particules.”

DESI est un instrument de pointe qui peut capter la lumière de 5 000 galaxies simultanément. Il a été construit et est exploité grâce au financement de l’Office of Science du Département de l’Energie Américain (DOE). DESI est installé au sommet du télescope de 4 mètres Nicholas U. Mayall de la National Science Foundation (NSF) à l’observatoire national de Kitt Peak. L’expérience en est à sa quatrième année sur cinq de sondage du ciel et prévoit de collecter environ 40 millions de galaxies et de quasars d’ici la fin du projet.

La collaboration DESI continue ses observations et analyse actuellement les trois premières années d’observations. Elle prévoit de présenter des mesures encore plus précises de l’histoire de l’expansion de l’Univers et leurs implications sur la nature de l’énergie noire au printemps 2025.

Les instituts français contribuant au programme DESI sont l’Institut de recherche sur les lois fondamentales de l’Univers (Irfu, CEA-Paris Saclay), le Laboratoire de physique nucléaire et de hautes énergies (LPNHE, CNRS / Sorbonne Université / Université Paris Cité), le Centre de physique des particules de Marseille (CPPM, CNRS / Aix-Marseille Université) et le Laboratoire d’astrophysique de Marseille (LAM, CNRS / Aix-Marseille Université / CNES).

DESI est soutenu par l’Office of Sciences du Département de l’Energie Américain (DOE) et par le National Energy Research Scientific Computing Center (NERSC), un centre de calcul du DOE Office of Science. DESI bénéficie également du soutien de la National Science Foundation des États-Unis, du Science and Technologies Facilities Council du Royaume-Uni, de la Gordon and Betty Moore Foundation, de la Heising-Simons Foundation, du Commissariat à l’énergie atomique et aux énergies alternatives (CEA) de France, du Conseil national de la science et de la technologie du Mexique, du ministère de l’économie de l’Espagne, ainsi que des institutions membres de DESI.

La collaboration DESI est honorée d’être autorisée à mener des recherches scientifiques sur l’oligam Du’ag (Kitt Peak), une montagne qui revêt une importance particulière pour la nation Tohono O’odham.

Classé sous :Univers Balisé avec :Communiqué de presse

  • « Aller à la page précédente
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Pages provisoires omises …
  • Page 25
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter