• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Communiqué de presse

Planètes : les « Jupiters chauds » se seraient formés très rapidement

9 septembre 2015 by osuadmin

Vingt ans après leur découverte, les « Jupiters chauds », ces planètes géantes gazeuses tournant de façon très rapprochée autour de leur étoile, restent encore des objets énigmatiques. En utilisant le spectro-polarimètre ESPaDOnS du Télescope Canada-FranceHawaii, une équipe internationale d’astrophysiciens menée par Jean-François Donati (CNRS) et à laquelle participe des chercheurs du Laboratoire d’Astrophysique de Marseille – LAM (AMU/CNRS) vient de montrer que ces corps pourraient ne mettre que quelques millions d’années à se rapprocher de leur étoile tout juste formée. Cette découverte devrait nous aider à mieux comprendre comment les systèmes planétaires, similaires ou différents de notre système solaire, se forment et évoluent au cours de leur existence. Elle est publiée le 9 septembre 2015 dans Monthly Notices of the Royal Astronomical Society (MNRAS) et en accès libre sur le site ArXiv.

Dans le système solaire, les planètes rocheuses, comme la Terre et Mars, occupent les régions proches du Soleil, alors que les planètes géantes et gazeuses, comme Jupiter ou Saturne, sont plus éloignées. D’où la surprise de Michel Mayor et Didier Queloz lorsqu’ils découvrent, il y a exactement vingt ans, la toute première exoplanète : celle-ci est en effet une planète géante gazeuse similaire à Jupiter, mais tournant autour de son étoile vingt fois plus près que la Terre autour du Soleil.

Depuis, les astronomes ont montré que ces futurs « Jupiters chauds » se forment en périphérie du disque protoplanétaire, le nuage qui donne naissance à l’étoile centrale et aux planètes environnantes, avant de migrer à l’intérieur. C’est lorsqu’elles se rapprochent ensuite au plus près de leur étoile que ces planètes géantes gazeuses se réchauffent et deviennent des Jupiters chauds – au contraire de notre Jupiter, planète géante « froide », environ 5 fois plus éloignée du Soleil que la Terre. Mais quand ces Jupiter chauds se rapprochent-ils de leur étoile ? Les astronomes imaginaient jusqu’ici deux théories possibles : ce processus peut se produire dans une phase très précoce, alors que les jeunes planètes s’alimentent encore au sein du disque originel, ou bien plus tardivement, une fois que de nombreuses planètes ont été formées et interagissent en une chorégraphie si instable que certaines d’entre elles se retrouvent propulsées au voisinage immédiat de l’étoile centrale.

Une équipe internationale d’astrophysiciens, comprenant plusieurs chercheurs français et menée par Jean-François Donati, de l’Institut de recherche en astrophysique et planétologie (IRAP, CNRS/Université Toulouse III-Paul Sabatier) 1, viendrait de montrer que le premier scénario était une réalité. Avec ESPaDOnS, le spectropolarimètre construit par les équipes de l’IRAP pour le télescope Canada-France-Hawaï (CFHT 2 ), ils ont observé des étoiles en formation au sein d’une pouponnière stellaire située à environ 450 années-lumière de la Terre, dans la constellation du Taureau. L’une d’elles, V830 Tau, montre des signatures similaires à celles causées par une planète 1.4 fois plus massive que Jupiter, mais sur une orbite 15 fois plus proche de l’étoile que la Terre ne l’est du Soleil. Cette découverte suggère que les Jupiters chauds peuvent être extrêmement jeunes et potentiellement bien plus fréquents autour des étoiles en formation qu’au voisinage d’étoiles adultes comme le Soleil.

Formation des étoiles et des planètes au sein de la pouponnière stellaire de la constellation du Taureau, telle que révélée par le télescope APEX au Chili.
Crédit : ESO / APEX
Vue d’artiste d’une planète géante en formation dans le disque d’une étoile jeune.
Crédit : NASA / JPL

Les étoiles jeunes abritent des trésors d’information sur la formation des planètes. Leur activité et leur champ magnétique très intenses les couvrent de taches des centaines de fois plus grosses que celles du Soleil. Elles engendrent donc dans leur spectre des perturbations d’amplitude bien plus importantes que celles causées par des planètes qui deviennent du coup beaucoup plus difficiles à détecter, même dans le cas des Jupiters chauds. Pour aborder ce problème, l’équipe a entrepris le programme d’observation MaTYSSE 3 dans le but de cartographier la surface de ces étoiles et de détecter d’éventuels Jupiters chauds.

En suivant ces étoiles au cours de leur rotation et par le biais de techniques tomographiques inspirées de l’imagerie médicale, il est possible de reconstruire la distribution des taches sombres et brillantes, ainsi que la topologie du champ magnétique, à la surface des étoiles jeunes. Cette modélisation rend également possible la correction des effets perturbateurs de l’activité et la détection d’éventuels Jupiters chauds. Dans le cas de V830 Tau, les auteurs sont parvenus à découvrir, grâce à cette nouvelle technique, un signal enfoui suggérant la présence d’une planète géante. Même si de nouvelles données sont nécessaires pour valider la détection, ce premier résultat prometteur démontre clairement que la méthode proposée peut nous fournir les clés de l’énigme de la formation des Jupiters chauds.

SPIRou, le nouvel instrument que les équipes de l’IRAP construisent en ce moment pour le TCFH et dont la première lumière est prévue pour 2017, permettra de repousser encore les limites de la méthode, grâce à sa capacité à observer dans l’infrarouge – domaine dans lequel les étoiles jeunes sont beaucoup plus brillantes. Grâce à lui, la formation des étoiles et des planètes pourra être explorée encore plus finement.

1. L’IRAP appartient à l’Observatoire Midi-Pyrénées (OMP).
2. Le CFHT (cfht.hawaii.edu) est une organisation appartenant conjointement : au Conseil National de Recherches du Canada, au Centre National de la Recherche Scientifique (France) et à l’Université d’Hawaii (USA).
3. MaTYSSE, « Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets »

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Andes : un paléolac géant au pays des glaciers

15 juillet 2015 by osuadmin

Au pied de la cordillère des Andes, un gigantesque lac, le lac Tauca, a recouvert l’Altiplano bolivien pendant la dernière déglaciation. Grâce à une méthode originale développée à partir de micro-algues fossiles, les diatomées, une équipes de chercheurs de l’IRD, du CNRS et d’Aix-Marseille Université à laquelle participent des chercheurs du CEREGE (OSU Pythéas) vient de montrer le rôle sur le climat régional de la disparition il y a 14 000 ans de ce géant d’eau salé, perché à quelque 3 500 m d’altitude. Son assèchement a par ailleurs donné naissance à la croûte de sel la plus grande du monde (11 000 km2) qui recouvre aujourd’hui le célèbre salar d’Uyuni.

  • La dernière déglaciation dans les Andes boliviennes

Des chercheurs de l’IRD et leurs partenaires du CNRS et d’Aix-Marseille Université viennent de montrer l’influence régionale du paléolac Tauca, qui occupait l’Altiplano bolivien à l’époque de la dernière déglaciation. Ce gigantesque lac a connu une phase d’extension maximale qui a débuté il y a 16 000 ans. Puis, il s’est asséché progressivement pour disparaître près de 2 000 ans plus tard. Pour étudier la possible influence du lac sur le climat de la région, les scientifiques ont reconstitué sa composition isotopique. Pour cela, ils ont mis en œuvre une méthode originale utilisant des micro-algues fossiles, les diatomées.

 

  • Des micro-algues témoins des conditions d’humidité

La quantité d’isotopes lourds de l’oxygène (δ18O) contenue dans ces fossiles retrace les conditions géochimiques des eaux du lac dans lesquelles ces algues se sont développées. Cette composition isotopique fournit aux scientifiques un indicateur précis des températures et des conditions d’humidité dans la région à l’époque où ces algues vivaient. Lorsque la pluie augmente et que le niveau du lac s’élève, le rapport isotopique de l’oxygène des eaux baisse et inversement lorsque les précipitations diminuent.

 

  • Une influence climatique régionale

Les chercheurs ont alors mis en regard l’évolution de la composition isotopique du lac qu’ils ont reconstituée avec un autre signal isotopique, enregistré dans une carotte de glace forée au sommet du mont Sajama, surplombant l’ancien emplacement du Tauca. Cette carotte de glace a révélé, vers – 14 500 ans, un pic de δ18O exceptionnel comparé aux autres enregistrements dans les glaces dans la région andine. En revanche, ce pic est cohérent avec les mesures effectuées sur les fossiles de diatomées contenus dans les sédiments de l’ancien lac. Cette étude met donc en évidence que les neiges prélevées au Sajama se seraient formées à cette période à partir du mélange entre l’humidité présente dans l’atmosphère et celle apportée par l’évaporation du lac.

Ce résultat suggère que dans des cas très spécifiques comme celui-ci, avec la présence d’une étendue lacustre à proximité, un enregistrement paléoclimatique comme celui des précipitations dans les carottes de glaces peut être biaisé par le cycle hydrologique local. Son interprétation doit tenir compte de cette influence.

L’ancien méga-lac Tauca a donné naissance au célèbre Salar d’Uyuni et sa croûte de sel Crédit : IRD / Denis Wirrmann

 

Classé sous :Paléontologie Balisé avec :Communiqué de presse, Résultat scientifique

Quantifier l’impact des éruptions volcaniques sur le climat

31 août 2015 by osuadmin

Les grandes éruptions volcaniques éjectent dans la stratosphère des quantités considérables de soufre qui, après conversion en aérosols, bloquent une partie du rayonnement solaire et tendent à refroidir la surface de la Terre pendant quelques années. Une équipe internationale de chercheurs à laquelle participe Joël Guiot, chercheur au Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (OSU Pythéas – CNRS / IRD / Université d’Aix-Marseille) vient de mettre au point une méthode, présentée dans la revue Nature Geoscience, pour mesurer et simuler avec précision le refroidissement induit.

L’éruption du volcan Pinatubo, survenue en juin 1991 et considérée comme la plus importante du XXe siècle, a injecté 20 millions de tonnes de dioxyde de soufre dans la stratosphère et provoqué un refroidissement global moyen de 0,4°C.

Pour quantifier le refroidissement temporaire induit par les grandes éruptions de magnitude supérieure à celle du Mont Pinatubo survenues ces 1 500 dernières années, les scientifiques ont généralement recours à deux approches : la dendroclimatologie, basée sur l’analyse des cernes de croissance des arbres, et la simulation numérique en réponse à l’effet des particules volcaniques. Mais jusqu’à maintenant ces deux approches fournissaient des résultats assez contradictoires, ce qui ne permettait pas de déterminer avec précision l’impact des grandes éruptions volcaniques sur le climat.

Les refroidissements simulés par les modèles de climat étaient en effet deux à quatre fois plus importants et duraient plus longtemps que ce que les reconstitutions dendroclimatiques établissaient. Les écarts entre ces deux approches ont même conduit certains géophysiciens à douter de la capacité des cernes de croissance d’arbres à enregistrer les impacts climatiques des grandes éruptions volcaniques passées et à remettre en cause la capacité des modèles à les simuler fidèlement.

 

  • Réconcilier les deux approches

Aujourd’hui, des chercheurs de l’Université de Genève (UNIGE), de l’IRD, du CNRS, du CEA, de l’Université de Berne, de l’Université de Western Ontario et de Université de Cambridge sont parvenus à réconcilier les deux approches et à proposer une méthode capable d’estimer avec précision les effets que pourraient avoir les futures éruptions de forte magnitude sur le climat, pour ensuite mieux anticiper leurs impacts sur nos sociétés.

Dans cette équipe pluridisciplinaire, les dendrochronologues ont réalisé une nouvelle reconstitution des températures estivales de l’hémisphère nord pour les 1 500 dernières années. Ils ont analysé la largeur mais surtout la densité de cernes d’arbres, qui est très sensible aux variations de température et qui avait été négligée par le passé.

Les données ont été récoltées à travers tout l’hémisphère nord, de la Scandinavie à la Sibérie, en passant par le Québec, l’Alaska, les Alpes et les Pyrénées. Toutes les éruptions majeures ont ainsi été clairement détectées dans cette reconstitution. Les résultats ont montré que l’année qui suit une grande éruption est caractérisée par un refroidissement plus prononcé que celui observé dans les reconstitutions précédentes. Ces refroidissements ne semblent toutefois pas persister plus de trois ans à l’échelle hémisphérique.

Les physiciens du climat ont, quant à eux, calculé le refroidissement engendré par les deux plus grandes éruptions du dernier millénaire, les éruptions du Samalas et du Tambora, toutes deux survenues en Indonésie en 1257 et 1815 respectivement, à l’aide d’un modèle climatique sophistiqué. Ce modèle prend en compte la localisation des volcans, la saison de l’éruption et la hauteur d’injection du dioxyde de soufre et intègre un module microphysique capable de simuler le cycle de vie des aérosols volcaniques depuis leur formation, suite à l’oxydation du dioxyde de soufre, jusqu’à leur sédimentation et élimination de l’atmosphère. « Cette approche inhabituelle permet de simuler de façon réaliste la taille des particules d’aérosols volcaniques et leur espérance de vie dans l’atmosphère, ce qui conditionne directement l’ampleur et la persistance du refroidissement provoqué par l’éruption », explique Markus Stoffel, chercheur à l’UNIGE. Ces nouvelles simulations montrent que les perturbations des échanges de rayonnement, dues à l’activité volcanique, étaient largement surestimées dans les simulations précédentes, utilisées dans le dernier rapport du GIEC (Groupe intergouvernemental d’experts sur l’évolution du climat).

Pour la première fois, les résultats produits par les reconstitutions et les modèles climatiques convergent quant à l’intensité du refroidissement et démontrent que les éruptions de Tambora et du Samalas ont induit, à l’échelle de l’hémisphère nord, un refroidissement moyen oscillant entre 0,8 et 1,3°C pendant les étés 1258 et 1816. Les deux approches s’accordent également sur la persistance moyenne de ce refroidissement évaluée à deux-trois ans. Ces résultats ouvrent la voie à une meilleure évaluation du rôle du volcanisme dans l’évolution du climat.

Panache plinien de l’éruption du Sarychev (Russie) le 12 juin 2009. Crédit : NASA

Classé sous :Atmosphère, Environnement, Surface continentale, Terre Balisé avec :Communiqué de presse

Devant les météorites, les poussières interplanétaires sont de meilleurs marqueurs pour connaître la ceinture principale d’astéroïdes

16 juin 2015 by osuadmin

Une équipe composée principalement de chercheurs français a démontré que la plupart des poussières interplanétaires qui finissent en micrométéorites à la surface de la Terre sont les objets extraterrestres récoltés les plus représentatifs de la ceinture principale d’astéroïdes et non les météorites comme cela fut longtemps considéré. Elle a montré par la même occasion que ces poussières ont une origine principalement astéroïdale et non cométaire avec des conséquences sur les modèles d’évolution dynamique du système solaire. Cette étude est publiée le 16 juin 2015 dans the Astrophysical Journal.

Les micrométéorites sont des poussières extraterrestres faisant généralement une taille inférieure au millimètre et qui en masse représentent la fraction la plus importante de la matière extraterrestre accrétée par la Terre au cours du temps. Bien que petites, ce sont elles qui sont à l’origine de la plupart des étoiles filantes que l’on observe dans le ciel.

Une équipe menée par un chercheur du Laboratoire d’Astrophysique de Marseille (LAM – CNRS/AMU) a comparée les propriétés spectrales des astéroïdes riches en glace (comme Cérès par exemple, visité en ce moment par la sonde américaine DAWN) avec celles de toutes les classes de météorites et de poussières interplanétaires récoltés sur Terre ou dans la stratosphère. L’étude montre que seules les poussières interplanétaires anhydres sont compatibles avec les propriétés spectrales des astéroïdes riches en glace.

Tout d’abord, ce constat remet en cause le statut de référence des météorites dans la connaissance de la ceinture d’astéroïde, et cela au profit des poussières interplanétaires. Mais aussi, et en conséquence, il faut reconsidérer l’origine que l’on attribuait à ces poussières qui au lieu de provenir principalement des comètes comme on le supposait, proviennent essentiellement de la ceinture principale. En effet la comparaison avec les propriétés spectrales des comètes donne de moins fortes similitudes.

Ainsi la fraction la plus importante de la matière accrétée par la Terre – les poussières interplanétaires – est représentative de la fraction la plus importante des astéroïdes formant la ceinture principale – les astéroïdes glacés. En d’autres termes, la ceinture principale d’astéroïdes est la source principale de la matière accrétée aléatoirement par la Terre ; et les poussières interplanétaires – de part leur diversité spectrale – en sont les meilleures représentantes.

Cette étude résout un malaise de longue date puisqu’aucune roche extraterrestre n’apparaissait comme un analogue convaincant des astéroïdes riches en glaces qui dominent outrageusement (en masse) la ceinture principale. Elle conforte par ailleurs l’aspect cométaire de ces objets ; en effet, certains dégazent comme les comètes (c’est notamment le cas de Cérès) et d’autres possèdent de la glace à la surface (comme 24 Thémis).

Vue de Ceres à une distance de 13,600 kilometres. Image prise par la sonde Dawn de la NASA.
Crédit : NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Illustration des liens entre les différents groupes de petits corps du systeme solaire (asteroides, cometes) et les deux groupes de matériaux extraterrestres (météorites, IDPs).
Crédit : Vernazza et al. 2015 (ApJ)

Par ailleurs, il faut savoir que, le modèle de Nice de formation du Système solaire prédit grosso modo que des objets du Système solaire externe, tels que les Objets Trans-Neptuniens (TNOs), ont été implantés dans la ceinture principale. De ce point de vue, les présents résultats abondent dans ce sens en apportant une preuve supplémentaire de l’aspect cométaire de ces objets. En se basant sur les modèles récents de l’évolution dynamique du système solaire, il apparait également que les météorites échantillonnent la diversité des planetésimaux qui se sont formés dans la région interne du système solaire (0.5-4 UA) alors que les poussières interplanétaires échantillonnent la diversité des planetésimaux qui se sont formés dans la région externe du système solaire (au delà de 5 UA).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

On a retrouvé Philae !

11 juin 2015 by osuadmin

Après plusieurs mois de recherches, les équipes du Laboratoire d’Astrophysique de Marseille, celles du SONC et plusieurs scientifiques impliqués dans les instruments CONSERT et ROMAP pensent avoir retrouvé l’atterrisseur Philae largué sur la comète 67P le 12 novembre dernier.

Libéré de son étreinte mécanique avec l’orbiteur Rosetta le 12 novembre 2014, après une décennie de voyage dans le Système solaire, Philae est tombé sur le noyau de la comète 67P/Churyumov-Gerasimenko. Si tout s’était déroulé comme prévu, Philae serait toujours actuellement juste à côté du point d’atterrissage visé par les équipes de mécaniques spatiale du SONC (CNES, Toulouse) et baptisé à l’époque Algikia. Mais le propulseur de gaz froid qui devait plaquer l’atterrisseur au sol pendant que ses harpons s’enfonçaient dans la surface pour l’arrimer ne s’est pas déclenché, les harpons n’ont pas fonctionné et Philae a rebondi plusieurs fois durant 2 heures avant d’aller s’encastrer dans un recoin de falaise mal éclairé à plus de 1 km d’Algikia. Ses instruments scientifiques ont pu fonctionner plus ou moins bien, certains tirant profit des rebonds inattendus pour enregistrer des données supplémentaires, d’autres étant handicapés par l’orientation de Philae par rapport à la surface qui ne leur permettait pas de forer et de prélever des échantillons pour analyses, mais, le plus grave, a vraiment été cette dérive vers une région bien moins exposée au Soleil.

Images OSIRIS-NAC du 22 octobre et des 12 et 13 décembre 2014 montrant la possible détection de Philae dans un repli du terrain (champ de 20 x 20 m environ)
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Philae ne pouvait pas collecter suffisamment d’énergie solaire pour charger sa batterie et prolonger sa mission scientifique qui a donc pris fin avec l’épuisement de sa pile, une soixantaine d’heures après l’arrivée au sol.

Si les images et les mesures réalisées par différents instruments de Rosetta et de Philae ont permis de circonscrire rapidement une zone d’atterrissage de moins de 200 m d’envergure, située non loin de la bordure de la dépression d’Hatmehit sur le petit lobe, retrouver Philae dans ce chaos mal éclairé s’est avéré bien plus incertain. Après des mois d’efforts, et même s’il la probabilité que les chercheurs aient enfin localisé Philae semble très forte, il subsiste malgré tout un doute. Localiser précisément Philae est pourtant primordial pour exploiter pleinement les données récoltées par ses instruments, notamment celles de CONSERT grâce auxquelles les scientifiques auront une compréhension bien plus intime de la structure du noyau. Cela permettra également de déterminer la période à partir de laquelle l’évolution des conditions d’ensoleillement à l’approche du Soleil favorisera le réveil de l’atterrisseur et sa reprise de contact avec l’orbiteur.

Images prises le 12 novembre 2014 par OSIRIS juste avant et après le 1er rebond de Philae sur le site Algikia ; les heures sont indiquées en TU.
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
  • La quête de Philae

Le 12 novembre 2014 à 15h34 TU, Philae est entré en contact avec la surface du noyau et a rebondi. Ce 1er contact et ce rebond ont été photographiés par la caméra de navigation (NavCam) et par la caméra à haute résolution OSIRIS-NAC de l’orbiteur. Cette dernière a même pu suivre Philae alors qu’il partait en direction de la dépression d’Hatmehit. Sur Philae, la caméra de l’instrument ROLIS a fourni des images de la surface jusqu’à moins de 10 m d’altitude avant le premier rebonds et ROMAP a donné des indications précises sur le champ magnétique mesuré durant les heures suivantes, ce qui a permis de connaître l’heure exacte des différents contacts : 16h20 TU, 17h25 TU et 17h32 TU.

Finalement, une fois Philae immobilisé sur un site inconnu, baptisé depuis Abydos, les caméras de CIVA ont effectué un panoramique montrant son environnement immédiat : il était apparemment coincé à l’ombre d’une sorte de falaise de glace poussiéreuse. Dans les heures qui ont suivi, l’instrument CONSERT, sur Philae et à bord de Rosetta, a réalisé des mesures qui ont été utilisées pour finalement réduire la zone d’atterrissage à une ellipse de 160 x 16 m. Ensuite, la recherche visuelle de Philae a commencé.

L’ellipse représente la zone d’atterrissage potentielle de Philae après ses rebonds, le 12 novembre 2014. Elle mesure 16 x 160 m.
Crédit : ESA/Rosetta/Philae/CONSERT

Toutes les images réalisées par la NavCam et OSIRIS ont été scrutées pour essayer de retrouver l’atterrisseur, mais rien ne ressemble plus au reflet du Soleil sur un panneau solaire que le reflet du Soleil sur un morceau de glace ! Naturellement, il fallait tenir compte de l’éclairement de la zone et de la résolution des images. Mi-décembre 2014, alors que Rosetta effectuait des survols du petit lobe à près de

18 km de distance, la résolution des images d’OSIRIS-NAC était proche de 34 cm par pixel, donc largement suffisante pour voir Philae dont la partie centrale mesure près de 1 m de large, mais le Soleil éclairait la zone sous un angle de 90° et les ombres étaient très grandes.

L’orientation de l’atterrisseur et le fait qu’il se situait probablement de biais dans un renfoncement du terrain n’ont pas simplifié la tâche des personnes qui se sont attaquées au problème. Durant des semaines, tous leurs efforts ont été vains. Chaque fois qu’un « candidat » était trouvé, une autre image prise sous un angle ou un éclairage différent permettait de l’écarter.

L’ellipse représente la zone d’atterrissage potentielle de Philae après ses rebonds, le 12 novembre 2014. Elle mesure 16 x 160 m.
Crédit : ESA/Rosetta/Philae/CONSERT

Finalement, un candidat a fini par sortir du lot. Il a été détecté par Guillaume Faury d’AKKA Technologies, une entreprises qui travaille sous contrat pour le Laboratoire d’Astrophysique de Marseille (LAM) et l’Institut de Recherche en Astrophysique et Planétologie (IRAP), en comparant des images prises le 22 octobre à près de 8 km de la surface avec d’autres prises les 12 et 13 décembre à près de 18 km. Pour l’astrophysicien Philippe Lamy (LAM, unité CNRS/Aix-Marseille Université), qui a participé à la conception et à la réalisation de la caméra OSIRIS-NAC et qui a inlassablement recherché Philae : « les images prises avant et après l’atterrissage n’ont pas la même résolution, mais les détails topographiques correspondent, à l’exception d’une petite tache lumineuse que l’on ne voit que sur les images de décembre et qui semble donc être un bon candidat ! De plus, le fait que ce candidat soit visible sur les images prises le 12 et le 13 décembre prouve qu’il ne s’agit pas d’un reflet, d’un artefact sur le capteur électronique, voire d’une poussière passant dans le champ. »

Gros plan sur la zone de recherche de Philae.
Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Éric Jurado, responsable des activités de mécanique spatiale au SONC (Science Operation & Navigation Center, CNES, Toulouse) et ses collègues ont depuis confirmé que ce candidat était à prendre vraiment au sérieux, car sa position est compatible avec les reconstructions de trajectoire qu’ils ont réalisées et avec les critères d’ensoleillement et de visibilité radio qui ont été déterminés depuis novembre. Il se situe légèrement en dehors de la zone calculée à partir des données de CONSERT, mais l’analyse de ces données se poursuit et la zone pourrait être décalée pour tenir compte de l’amélioration du modèle de terrain.

Par ailleurs, il n’est pas impossible que des modifications de la surface soient intervenues entre les images d’octobre et de décembre provoquant l’apparition de nouvelles portions de matériau plus claires, mais cela semble improbable car les conditions d’ensoleillement ont peu varié sur la période.

Seules de nouvelles images à haute résolution de la zone avec un bon éclairage permettraient de trancher, mais les survols rapprochés du noyau sont à présent proscrits à cause de l’accroissement de son activité à l’approche du Soleil. Il faudra donc attendre l’automne et la baisse de cette activité pour revenir à proximité, en espérant que les modifications locales de la surface n’auront pas de facto mis un terme aux recherches en enfouissant Philae ou en le catapultant dans l’espace. À moins, bien sûr, que Philae se réveille et nous dise tout simplement : « je suis là ! »

Classé sous :Univers Balisé avec :Communiqué de presse

« Le saviez-vous ? » arrive sur la toile !

25 février 2015 by osuadmin

« Le saviez-vous ? » c’est une série de clips de 2 à 4 minutes sur une question ou une notion scientifique, réalisés en s’appropriant le langage et les modes de consommation en ligne des adolescents. L’objectif de ces clips est de faire découvrir au grand public et plus particulièrement aux adolescents quelques facettes de la science de manière ludique et didactique. Retrouvez « Le saviez-vous TV ? » sur la toile.

Le projet est porté par l’Observatoire des Sciences de l’Univers (OSU) Institut Pythéas (CNRS, IRD, AMU). En s’appuyant sur les équipes scientifiques de l’Institut Pythéas, l’objectif de « Le saviez-vous ? » est de rendre certaines facettes de la science encore plus accessibles en présentant les moyens et les techniques employés, mais aussi les enjeux des recherches et les défis à relever pour faire évoluer la connaissance. « Le saviez-vous ? » repose donc sur une collaboration entre des spécialistes de la communication et de la diffusion des connaissances, des professionnels de la vidéo et les scientifiques de l’ensemble des laboratoires de recherche associés au projet. Le principe général est simple : Un(e) comédien(e) âgé(e) d’une vingtaine d’années se tient face à la caméra dans un décor représentant sa chambre. Il pose une question et y répond. Il interagit avec son chat en peluche « Schrödinger ». En gros, c’est tout à fait comme s’il répétait son exposé devant la caméra avec son chat pour public. Ce principe de mise en scène nous permettra d’être à la fois précis et léger et d’aborder ainsi des notions parfois complexes avec simplicité (et parfois même un peu d’humour !). Tous les mois, nous diffusons sur la toile un nouvel épisode de « Le saviez-vous ? » en partenariat avec le magazine « Science & Vie Junior », premier des magazines jeunesse dédiés à la science. Ainsi, les lecteurs du magazine et les internautes peuvent retrouver chaque mois Capucine ou Gaétan, nos deux comédiens, dans un nouveau clip présentant la science tout simplement !

 

  • Pour son lancement « Le saviez-vous ? » fait honneur à la lumière

2015 ayant été proclamée « Année internationale de la lumière », « Le saviez-vous ? » lui consacre ses sept premiers clips :

  • Qu’est- ce que la lumière ?
  • Les rayons Gamma
  • Les UV
  • Les rayons X
  • La lumière visible
  • Les Infrarouges
  • Les micro-ondes Une série de clips qui permet de découvrir les propriétés de la lumière par grands domaines de longueur d’onde.

 

  • La lumière et après…

Plusieurs autres clips sont déjà en attente de diffusion ou en préparation. Une série sur le changement climatique est en cours de réalisation en collaboration avec le Labex OT-Med. Des clips sur l’acidification des océans, sur la biodiversité attendent leur tour pour être diffusés… tout comme ceux sur la matière noire, le changement du champ magnétique terrestre… « Le saviez-vous ? » au-delà des grandes questions au cœur de l’actualité traitera bien plus largement des sciences de l’univers dans toutes leurs diversités. Retrouvez « Le saviez-vous ? » sur Youtube.

Classé sous :Biodiversité, Climat, Écologie, Environnement, Terre, Univers Balisé avec :Communiqué de presse

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Pages provisoires omises …
  • Page 39
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter