• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Communiqué de presse

Accord signé pour le Spectrographe HARMONI – E-ELT

28 septembre 2015 by osuadmin

Lors d’une cérémonie à l’Institut de Mathématiques de l’Université d’Oxford, le 22 septembre 2015, l’ESO a signé un contrat avec un consortium d’instituts européens pour la conception et la construction de l’instrument HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph) pour l’E-ELT. Le Laboratoire d’Astrophysique de Marseille (LAM) est un des principaux laboratoires de ce consortium.

L’accord a été signé par Grahame Blair, Directeur Exécutif des programmes du STFC (Science and Technology Facilities Council), au nom du consortium et Tim de Zeeuw, Directeur Général de l’ESO, en présence de Patrick Roche, Président du Conseil de l’ESO et Niranjan Thatte, Responsable Scientifique d’HARMONI.

HARMONI est un spectrographe intégral de champ, instrument majeur pour la spectroscopie visible et proche infrarouge. Il permettra d’explorer les galaxies de l’Univers primordial, d’étudier les constituants de l’Univers local mais aussi de caractériser certaines exoplanètes. Il pourra être utilisé avec différents systèmes d’optique adaptative et viendra compléter la caméra MICADO principalement axée sur l’imagerie.

L’implication des chercheurs et des ingénieurs du CNRS est fondamentale car la réalisation de ce nouvel instrument n’aurait pas pu être envisagée sans la participation du CRAL (Centre de Recherche Astrophysique de Lyon, CNRS/UCBL/ENSL), du LAM (Laboratoire d’Astrophysique de Marseille, CNRS/AMU), et de l’IPAG (Institut de Planétologie et Astrophysique de Grenoble, CNRS/UJF) et aussi sans la participation importante de l’ONERA (le centre français de recherche aérospatiale) pour les aspects optique adaptative et dans le cadre de la récente convention signée entre le CNRS/INSU et l’ONERA.

Le Laboratoire d’Astrophysique de Marseille partage la co-responsabilité scientifique (Co-I) de l’instrument HARMONI. A ce titre, c’est un des acteurs de premier plan pour la préparation des grands programmes scientifiques qui seront effectués avec l’instrument, notamment :

  • la caractérisation des atmosphères autour des exo-planètes et des disques circumstellaires dans lesquels elles se forment, ainsi que l’étude des objets de notre système solaire,
  • l’étude des populations stellaires résolues au sein d’amas extragalactiques proches, de l’environnement des noyaux actifs et des trous noirs centraux, de la formation stellaire et des échanges de gaz entre le milieu interstellaire et le milieu intergalactique,
  • l’étude de la formation des galaxies et l’enrichissement en métaux du milieu intergalactique, de l’assemblage de la masse des galaxies, et l’analyse de la distribution de la masse des galaxies et des amas,
  • la caractérisation des étoiles de première génération, des supernovae primordiales, et la formation des premières galaxies qui constituent un des enjeux majeur en cosmologie.

Les chercheurs et ingénieurs du LAM sont également fortement impliqués dans conception et la réalisation d’HAMONI. Le laboratoire est en effet responsable, en étroite collaboration avec l’ONERA, notamment par la mise en place d’une équipe intégrée LAM/ONERA, de l’étude, la réalisation, les tests et la validation du système d’optique adaptative de l’instrument (SCAO) ainsi que d’une première étude de concept du système d’optique adaptative tomographique (LTAO) qui utilisera les étoiles laser du futur télescope géant européen afin d’accroitre la sensibilité de l’instrument et le nombre de zones du ciel observables.

L’annonce ESO

Crédit photo : ESO/HARMONI consortium

Classé sous :Univers Balisé avec :Communiqué de presse

La chasse aux exoplanètes : 20 ans déjà !

5 octobre 2015 by osuadmin

Nous fêtons le 20e anniversaire de la découverte de la première exoplanète (planète orbitant autour d’une étoile autre que notre soleil) en octobre 1995 avec le spectrographe ELODIE et le télescope de 1m93 de l’Observatoire de Haute‐Provence, par le professeur Michel Mayor, astronome à l’Observatoire de Genève et par Didier Queloz son étudiant alors en thèse. C’est une découverte majeure en astronomie.

Cette planète nommée « 51 Peg.b » a des caractéristiques très surprenantes : de taille supérieure à Jupiter, elle tourne en seulement 4 jours autour de son étoile et elle est six fois plus proche de son étoile que Mercure ne l’est du Soleil… A ce jour, environ 2000 exoplanètes ont été confirmées et cette passionnante quête continue, avec l’espoir de trouver une « soeur » de la Terre qui aurait les conditions pour l’apparition de la vie.

A l’occasion de cet anniversaire, l’Observatoire de Haute‐Provence de l’Institut Pythéas (CNRS – AMU) organise un colloque scientifique international « Colloque OHP 2015 – 20 Years of Giant Exoplanets » du 5 au 9 octobre 2015, qui fera le point des connaissances sur les exoplanètes géantes gazeuses (cf. affiche cicontre).

Le grand public pourra participer à cet anniversaire avec la conférence de Monsieur Michel Mayor, professeur de l’Université de Genève, qui aura lieu le lundi 5 octobre 2015 à 18h à l’Espace Bonne Fontaine de Forcalquier (entrée libre – sans réservation). Cette conférence s’intitule : « Planètes extrasolaires : Un ancien rêve de l’humanité – Une réalité de l’astrophysique moderne ». Nous découvrirons cette formidable quête aux exoplanètes et nous continuerons à nous interroger sur les mystères de l’Univers… Sommes‐nous seuls ? Existe‐il d’autres Mondes habitables et habités dans l’univers ?

Classé sous :Univers Balisé avec :Communiqué de presse

Planètes : les « Jupiters chauds » se seraient formés très rapidement

9 septembre 2015 by osuadmin

Vingt ans après leur découverte, les « Jupiters chauds », ces planètes géantes gazeuses tournant de façon très rapprochée autour de leur étoile, restent encore des objets énigmatiques. En utilisant le spectro-polarimètre ESPaDOnS du Télescope Canada-FranceHawaii, une équipe internationale d’astrophysiciens menée par Jean-François Donati (CNRS) et à laquelle participe des chercheurs du Laboratoire d’Astrophysique de Marseille – LAM (AMU/CNRS) vient de montrer que ces corps pourraient ne mettre que quelques millions d’années à se rapprocher de leur étoile tout juste formée. Cette découverte devrait nous aider à mieux comprendre comment les systèmes planétaires, similaires ou différents de notre système solaire, se forment et évoluent au cours de leur existence. Elle est publiée le 9 septembre 2015 dans Monthly Notices of the Royal Astronomical Society (MNRAS) et en accès libre sur le site ArXiv.

Dans le système solaire, les planètes rocheuses, comme la Terre et Mars, occupent les régions proches du Soleil, alors que les planètes géantes et gazeuses, comme Jupiter ou Saturne, sont plus éloignées. D’où la surprise de Michel Mayor et Didier Queloz lorsqu’ils découvrent, il y a exactement vingt ans, la toute première exoplanète : celle-ci est en effet une planète géante gazeuse similaire à Jupiter, mais tournant autour de son étoile vingt fois plus près que la Terre autour du Soleil.

Depuis, les astronomes ont montré que ces futurs « Jupiters chauds » se forment en périphérie du disque protoplanétaire, le nuage qui donne naissance à l’étoile centrale et aux planètes environnantes, avant de migrer à l’intérieur. C’est lorsqu’elles se rapprochent ensuite au plus près de leur étoile que ces planètes géantes gazeuses se réchauffent et deviennent des Jupiters chauds – au contraire de notre Jupiter, planète géante « froide », environ 5 fois plus éloignée du Soleil que la Terre. Mais quand ces Jupiter chauds se rapprochent-ils de leur étoile ? Les astronomes imaginaient jusqu’ici deux théories possibles : ce processus peut se produire dans une phase très précoce, alors que les jeunes planètes s’alimentent encore au sein du disque originel, ou bien plus tardivement, une fois que de nombreuses planètes ont été formées et interagissent en une chorégraphie si instable que certaines d’entre elles se retrouvent propulsées au voisinage immédiat de l’étoile centrale.

Une équipe internationale d’astrophysiciens, comprenant plusieurs chercheurs français et menée par Jean-François Donati, de l’Institut de recherche en astrophysique et planétologie (IRAP, CNRS/Université Toulouse III-Paul Sabatier) 1, viendrait de montrer que le premier scénario était une réalité. Avec ESPaDOnS, le spectropolarimètre construit par les équipes de l’IRAP pour le télescope Canada-France-Hawaï (CFHT 2 ), ils ont observé des étoiles en formation au sein d’une pouponnière stellaire située à environ 450 années-lumière de la Terre, dans la constellation du Taureau. L’une d’elles, V830 Tau, montre des signatures similaires à celles causées par une planète 1.4 fois plus massive que Jupiter, mais sur une orbite 15 fois plus proche de l’étoile que la Terre ne l’est du Soleil. Cette découverte suggère que les Jupiters chauds peuvent être extrêmement jeunes et potentiellement bien plus fréquents autour des étoiles en formation qu’au voisinage d’étoiles adultes comme le Soleil.

Formation des étoiles et des planètes au sein de la pouponnière stellaire de la constellation du Taureau, telle que révélée par le télescope APEX au Chili.
Crédit : ESO / APEX
Vue d’artiste d’une planète géante en formation dans le disque d’une étoile jeune.
Crédit : NASA / JPL

Les étoiles jeunes abritent des trésors d’information sur la formation des planètes. Leur activité et leur champ magnétique très intenses les couvrent de taches des centaines de fois plus grosses que celles du Soleil. Elles engendrent donc dans leur spectre des perturbations d’amplitude bien plus importantes que celles causées par des planètes qui deviennent du coup beaucoup plus difficiles à détecter, même dans le cas des Jupiters chauds. Pour aborder ce problème, l’équipe a entrepris le programme d’observation MaTYSSE 3 dans le but de cartographier la surface de ces étoiles et de détecter d’éventuels Jupiters chauds.

En suivant ces étoiles au cours de leur rotation et par le biais de techniques tomographiques inspirées de l’imagerie médicale, il est possible de reconstruire la distribution des taches sombres et brillantes, ainsi que la topologie du champ magnétique, à la surface des étoiles jeunes. Cette modélisation rend également possible la correction des effets perturbateurs de l’activité et la détection d’éventuels Jupiters chauds. Dans le cas de V830 Tau, les auteurs sont parvenus à découvrir, grâce à cette nouvelle technique, un signal enfoui suggérant la présence d’une planète géante. Même si de nouvelles données sont nécessaires pour valider la détection, ce premier résultat prometteur démontre clairement que la méthode proposée peut nous fournir les clés de l’énigme de la formation des Jupiters chauds.

SPIRou, le nouvel instrument que les équipes de l’IRAP construisent en ce moment pour le TCFH et dont la première lumière est prévue pour 2017, permettra de repousser encore les limites de la méthode, grâce à sa capacité à observer dans l’infrarouge – domaine dans lequel les étoiles jeunes sont beaucoup plus brillantes. Grâce à lui, la formation des étoiles et des planètes pourra être explorée encore plus finement.

1. L’IRAP appartient à l’Observatoire Midi-Pyrénées (OMP).
2. Le CFHT (cfht.hawaii.edu) est une organisation appartenant conjointement : au Conseil National de Recherches du Canada, au Centre National de la Recherche Scientifique (France) et à l’Université d’Hawaii (USA).
3. MaTYSSE, « Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets »

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Andes : un paléolac géant au pays des glaciers

15 juillet 2015 by osuadmin

Au pied de la cordillère des Andes, un gigantesque lac, le lac Tauca, a recouvert l’Altiplano bolivien pendant la dernière déglaciation. Grâce à une méthode originale développée à partir de micro-algues fossiles, les diatomées, une équipes de chercheurs de l’IRD, du CNRS et d’Aix-Marseille Université à laquelle participent des chercheurs du CEREGE (OSU Pythéas) vient de montrer le rôle sur le climat régional de la disparition il y a 14 000 ans de ce géant d’eau salé, perché à quelque 3 500 m d’altitude. Son assèchement a par ailleurs donné naissance à la croûte de sel la plus grande du monde (11 000 km2) qui recouvre aujourd’hui le célèbre salar d’Uyuni.

  • La dernière déglaciation dans les Andes boliviennes

Des chercheurs de l’IRD et leurs partenaires du CNRS et d’Aix-Marseille Université viennent de montrer l’influence régionale du paléolac Tauca, qui occupait l’Altiplano bolivien à l’époque de la dernière déglaciation. Ce gigantesque lac a connu une phase d’extension maximale qui a débuté il y a 16 000 ans. Puis, il s’est asséché progressivement pour disparaître près de 2 000 ans plus tard. Pour étudier la possible influence du lac sur le climat de la région, les scientifiques ont reconstitué sa composition isotopique. Pour cela, ils ont mis en œuvre une méthode originale utilisant des micro-algues fossiles, les diatomées.

 

  • Des micro-algues témoins des conditions d’humidité

La quantité d’isotopes lourds de l’oxygène (δ18O) contenue dans ces fossiles retrace les conditions géochimiques des eaux du lac dans lesquelles ces algues se sont développées. Cette composition isotopique fournit aux scientifiques un indicateur précis des températures et des conditions d’humidité dans la région à l’époque où ces algues vivaient. Lorsque la pluie augmente et que le niveau du lac s’élève, le rapport isotopique de l’oxygène des eaux baisse et inversement lorsque les précipitations diminuent.

 

  • Une influence climatique régionale

Les chercheurs ont alors mis en regard l’évolution de la composition isotopique du lac qu’ils ont reconstituée avec un autre signal isotopique, enregistré dans une carotte de glace forée au sommet du mont Sajama, surplombant l’ancien emplacement du Tauca. Cette carotte de glace a révélé, vers – 14 500 ans, un pic de δ18O exceptionnel comparé aux autres enregistrements dans les glaces dans la région andine. En revanche, ce pic est cohérent avec les mesures effectuées sur les fossiles de diatomées contenus dans les sédiments de l’ancien lac. Cette étude met donc en évidence que les neiges prélevées au Sajama se seraient formées à cette période à partir du mélange entre l’humidité présente dans l’atmosphère et celle apportée par l’évaporation du lac.

Ce résultat suggère que dans des cas très spécifiques comme celui-ci, avec la présence d’une étendue lacustre à proximité, un enregistrement paléoclimatique comme celui des précipitations dans les carottes de glaces peut être biaisé par le cycle hydrologique local. Son interprétation doit tenir compte de cette influence.

L’ancien méga-lac Tauca a donné naissance au célèbre Salar d’Uyuni et sa croûte de sel Crédit : IRD / Denis Wirrmann

 

Classé sous :Paléontologie Balisé avec :Communiqué de presse, Résultat scientifique

Quantifier l’impact des éruptions volcaniques sur le climat

31 août 2015 by osuadmin

Les grandes éruptions volcaniques éjectent dans la stratosphère des quantités considérables de soufre qui, après conversion en aérosols, bloquent une partie du rayonnement solaire et tendent à refroidir la surface de la Terre pendant quelques années. Une équipe internationale de chercheurs à laquelle participe Joël Guiot, chercheur au Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (OSU Pythéas – CNRS / IRD / Université d’Aix-Marseille) vient de mettre au point une méthode, présentée dans la revue Nature Geoscience, pour mesurer et simuler avec précision le refroidissement induit.

L’éruption du volcan Pinatubo, survenue en juin 1991 et considérée comme la plus importante du XXe siècle, a injecté 20 millions de tonnes de dioxyde de soufre dans la stratosphère et provoqué un refroidissement global moyen de 0,4°C.

Pour quantifier le refroidissement temporaire induit par les grandes éruptions de magnitude supérieure à celle du Mont Pinatubo survenues ces 1 500 dernières années, les scientifiques ont généralement recours à deux approches : la dendroclimatologie, basée sur l’analyse des cernes de croissance des arbres, et la simulation numérique en réponse à l’effet des particules volcaniques. Mais jusqu’à maintenant ces deux approches fournissaient des résultats assez contradictoires, ce qui ne permettait pas de déterminer avec précision l’impact des grandes éruptions volcaniques sur le climat.

Les refroidissements simulés par les modèles de climat étaient en effet deux à quatre fois plus importants et duraient plus longtemps que ce que les reconstitutions dendroclimatiques établissaient. Les écarts entre ces deux approches ont même conduit certains géophysiciens à douter de la capacité des cernes de croissance d’arbres à enregistrer les impacts climatiques des grandes éruptions volcaniques passées et à remettre en cause la capacité des modèles à les simuler fidèlement.

 

  • Réconcilier les deux approches

Aujourd’hui, des chercheurs de l’Université de Genève (UNIGE), de l’IRD, du CNRS, du CEA, de l’Université de Berne, de l’Université de Western Ontario et de Université de Cambridge sont parvenus à réconcilier les deux approches et à proposer une méthode capable d’estimer avec précision les effets que pourraient avoir les futures éruptions de forte magnitude sur le climat, pour ensuite mieux anticiper leurs impacts sur nos sociétés.

Dans cette équipe pluridisciplinaire, les dendrochronologues ont réalisé une nouvelle reconstitution des températures estivales de l’hémisphère nord pour les 1 500 dernières années. Ils ont analysé la largeur mais surtout la densité de cernes d’arbres, qui est très sensible aux variations de température et qui avait été négligée par le passé.

Les données ont été récoltées à travers tout l’hémisphère nord, de la Scandinavie à la Sibérie, en passant par le Québec, l’Alaska, les Alpes et les Pyrénées. Toutes les éruptions majeures ont ainsi été clairement détectées dans cette reconstitution. Les résultats ont montré que l’année qui suit une grande éruption est caractérisée par un refroidissement plus prononcé que celui observé dans les reconstitutions précédentes. Ces refroidissements ne semblent toutefois pas persister plus de trois ans à l’échelle hémisphérique.

Les physiciens du climat ont, quant à eux, calculé le refroidissement engendré par les deux plus grandes éruptions du dernier millénaire, les éruptions du Samalas et du Tambora, toutes deux survenues en Indonésie en 1257 et 1815 respectivement, à l’aide d’un modèle climatique sophistiqué. Ce modèle prend en compte la localisation des volcans, la saison de l’éruption et la hauteur d’injection du dioxyde de soufre et intègre un module microphysique capable de simuler le cycle de vie des aérosols volcaniques depuis leur formation, suite à l’oxydation du dioxyde de soufre, jusqu’à leur sédimentation et élimination de l’atmosphère. « Cette approche inhabituelle permet de simuler de façon réaliste la taille des particules d’aérosols volcaniques et leur espérance de vie dans l’atmosphère, ce qui conditionne directement l’ampleur et la persistance du refroidissement provoqué par l’éruption », explique Markus Stoffel, chercheur à l’UNIGE. Ces nouvelles simulations montrent que les perturbations des échanges de rayonnement, dues à l’activité volcanique, étaient largement surestimées dans les simulations précédentes, utilisées dans le dernier rapport du GIEC (Groupe intergouvernemental d’experts sur l’évolution du climat).

Pour la première fois, les résultats produits par les reconstitutions et les modèles climatiques convergent quant à l’intensité du refroidissement et démontrent que les éruptions de Tambora et du Samalas ont induit, à l’échelle de l’hémisphère nord, un refroidissement moyen oscillant entre 0,8 et 1,3°C pendant les étés 1258 et 1816. Les deux approches s’accordent également sur la persistance moyenne de ce refroidissement évaluée à deux-trois ans. Ces résultats ouvrent la voie à une meilleure évaluation du rôle du volcanisme dans l’évolution du climat.

Panache plinien de l’éruption du Sarychev (Russie) le 12 juin 2009. Crédit : NASA

Classé sous :Atmosphère, Environnement, Surface continentale, Terre Balisé avec :Communiqué de presse

Devant les météorites, les poussières interplanétaires sont de meilleurs marqueurs pour connaître la ceinture principale d’astéroïdes

16 juin 2015 by osuadmin

Une équipe composée principalement de chercheurs français a démontré que la plupart des poussières interplanétaires qui finissent en micrométéorites à la surface de la Terre sont les objets extraterrestres récoltés les plus représentatifs de la ceinture principale d’astéroïdes et non les météorites comme cela fut longtemps considéré. Elle a montré par la même occasion que ces poussières ont une origine principalement astéroïdale et non cométaire avec des conséquences sur les modèles d’évolution dynamique du système solaire. Cette étude est publiée le 16 juin 2015 dans the Astrophysical Journal.

Les micrométéorites sont des poussières extraterrestres faisant généralement une taille inférieure au millimètre et qui en masse représentent la fraction la plus importante de la matière extraterrestre accrétée par la Terre au cours du temps. Bien que petites, ce sont elles qui sont à l’origine de la plupart des étoiles filantes que l’on observe dans le ciel.

Une équipe menée par un chercheur du Laboratoire d’Astrophysique de Marseille (LAM – CNRS/AMU) a comparée les propriétés spectrales des astéroïdes riches en glace (comme Cérès par exemple, visité en ce moment par la sonde américaine DAWN) avec celles de toutes les classes de météorites et de poussières interplanétaires récoltés sur Terre ou dans la stratosphère. L’étude montre que seules les poussières interplanétaires anhydres sont compatibles avec les propriétés spectrales des astéroïdes riches en glace.

Tout d’abord, ce constat remet en cause le statut de référence des météorites dans la connaissance de la ceinture d’astéroïde, et cela au profit des poussières interplanétaires. Mais aussi, et en conséquence, il faut reconsidérer l’origine que l’on attribuait à ces poussières qui au lieu de provenir principalement des comètes comme on le supposait, proviennent essentiellement de la ceinture principale. En effet la comparaison avec les propriétés spectrales des comètes donne de moins fortes similitudes.

Ainsi la fraction la plus importante de la matière accrétée par la Terre – les poussières interplanétaires – est représentative de la fraction la plus importante des astéroïdes formant la ceinture principale – les astéroïdes glacés. En d’autres termes, la ceinture principale d’astéroïdes est la source principale de la matière accrétée aléatoirement par la Terre ; et les poussières interplanétaires – de part leur diversité spectrale – en sont les meilleures représentantes.

Cette étude résout un malaise de longue date puisqu’aucune roche extraterrestre n’apparaissait comme un analogue convaincant des astéroïdes riches en glaces qui dominent outrageusement (en masse) la ceinture principale. Elle conforte par ailleurs l’aspect cométaire de ces objets ; en effet, certains dégazent comme les comètes (c’est notamment le cas de Cérès) et d’autres possèdent de la glace à la surface (comme 24 Thémis).

Vue de Ceres à une distance de 13,600 kilometres. Image prise par la sonde Dawn de la NASA.
Crédit : NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Illustration des liens entre les différents groupes de petits corps du systeme solaire (asteroides, cometes) et les deux groupes de matériaux extraterrestres (météorites, IDPs).
Crédit : Vernazza et al. 2015 (ApJ)

Par ailleurs, il faut savoir que, le modèle de Nice de formation du Système solaire prédit grosso modo que des objets du Système solaire externe, tels que les Objets Trans-Neptuniens (TNOs), ont été implantés dans la ceinture principale. De ce point de vue, les présents résultats abondent dans ce sens en apportant une preuve supplémentaire de l’aspect cométaire de ces objets. En se basant sur les modèles récents de l’évolution dynamique du système solaire, il apparait également que les météorites échantillonnent la diversité des planetésimaux qui se sont formés dans la région interne du système solaire (0.5-4 UA) alors que les poussières interplanétaires échantillonnent la diversité des planetésimaux qui se sont formés dans la région externe du système solaire (au delà de 5 UA).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Pages provisoires omises …
  • Page 40
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Bonus défense « Esprit de défense »
  • Festival de l’engagement 2025
  • Les ateliers du SUIO
  • Identification de la zone de formation des chondrites carbonées
  • Juno identifie l’empreinte aurorale manquante de la lune Callisto sur les pôles de Jupiter

Commentaires récents

Aucun commentaire à afficher.

Archives

  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter