• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Résultat scientifique

Du nouveau sur la formation des galaxies géantes

30 septembre 2016 by osuadmin

Dans un article qui vient d’être publié dans « Astronomy and Astrophysics », une équipe internationale impliquant des chercheurs du Laboratoire d’Astrophysique de Marseille (CNRS/Université Aix-Marseille) étudient Malin 1, une galaxie proche connue seulement depuis les années 80 et exhibant un très grand disque de gaz et d’étoiles. Les observations de Malin 1, un parfait prototype des « galaxies géantes à faible brillance de surface », ont permis aux scientifiques de réaliser une découverte inattendue qui remet en cause une des hypothèses sur les processus de formation des galaxies de ce type.

En raison de leur aspect diffus et de leur très faible brillance, ces galaxies pourtant massives sont difficiles à observer et restent méconnues aujourd’hui. Elles pourraient constituer une fraction importante des galaxies dans l’univers, d’autant que des objets semblables à Malin 1 pourraient avoir échappé à notre vigilance. Il est donc indispensable de les étudier et de comprendre leur formation et leur évolution. Cela devient maintenant possible grâce aux télescopes et détecteurs modernes, plus sensibles aux faibles brillances de surface.

Cet article présente pour la première fois des images de Malin 1 obtenues à six longueurs d’onde différentes (allant de l’ultraviolet grâce au projet GUViCS 1 à l’optique et l’infra-rouge proche grâce au projet NGVS mené avec la caméra MegaCam du Canada France Hawaï Telescope, CFHT). A l’origine planifié pour étudier l’amas de la Vierge, ces grandes campagnes d’observations nous permettent aussi de travailler sur d’autres objets situés en arrière-plan de cet amas, comme c’est le cas dans cette étude.

Combinaison des 4 images NGVS de Malin 1, obtenues avec la caméra MegaCam sur le télescope CFHT
Une indication de l’échelle est donnée dans la figure pour montrer la taille incroyable du disque de la Galaxie (Le diamètre de notre Galaxie est plutôt de 30 kpc).
Crédit : Boissier/A&A/ESO

Ces images nous offrent une nouvelle vue de Malin 1, le plus grand disque galactique connu dans l’univers. Son diamètre dépasse 250 kilo-parsec (en comparaison, celui de notre Galaxie est « seulement » d’une trentaine de kilo-parsec). Les chercheurs ont extrait de ces données la variation de la luminosité avec la distance au centre de la galaxie, ainsi que la variation des « couleurs » de la galaxie (c’est à dire des rapports de luminosité aux différentes longueurs d’ondes). Celles-ci dépendent fortement de l’histoire de la galaxie. La comparaison de ces résultats observationnels aux prédictions de différents modèles numériques a donc permis à l’équipe d’estimer pour la première fois quelle à du être l’histoire de la formation stellaire. Elle suggère que le disque géant de Malin 1 est en place depuis plusieurs milliards d’années, et que des étoiles s’y forment à un rythme modeste mais régulier sur le long-terme.

La courbe avec les barres d’erreur montre la variation avec le rayon de la couleur entre les 2 bandes de GALEX (FUV et NUV). Cette différence est sensible aux populations stellaires jeunes. La courbe bleue et rouge montre le modèle utilisé dans l’article : il est en accord avec ces observations. Au contraire, la ligne orange montre la couleur d’étoiles qui se seraient formées lors d’une interaction il y a 1.4 milliards d’années, ou bien d’une formation d’étoile qui se serait déplacée du centre vers l’extérieur depuis cette période (étoiles). Ces scénarios sont clairement contredit par les nouvelles observations.
Crédit : Adapted from Boissier et al.

Ce résultat est important et surprenant, car il contredit un scénario proposé il y a quelques années, selon lequel ces galaxies géantes sont formées lors d’interactions violentes. Il semble à présent exclu par les nouvelles données. Dans le contexte cosmologique de la formation des galaxies, on s’attend à de nombreuses interactions et fusions qui devraient perturber le disque de Malin 1. La formation d’une telle structure, et de sa survie dans ce contexte, offre donc un nouveau défi pour les simulations cosmologiques de formation des galaxies.

Variation avec le rayon de la densité de surface d’étoiles et de gaz déduite d’observations (noir) et du modèle présenté dans l’article (rouge).
Crédit : Boissier/A&A/ESO
La courbe rouge montre l’histoire du taux de formation stellaire (SFR) dans le disque géant de Malin 1 d’après le modèle discuté dans l’article qui reproduit correctement les densités de surface d’étoiles et les couleurs de la galaxie. Cette histoire suggère une formation étalée sur plusieurs milliards d’années. (La barre d’erreur indique une estimation du taux de formation stellaire actuel, estimé dans une étude plus ancienne).
Crédit : Adapted from Boissier et al.

Que va-t-il advenir de Malin 1 ? Le disque géant contenant une grande fraction de gaz, la formation d’étoiles va probablement continuer à se produire à un rythme modeste pendant des milliards d’années, lui permettant d’accroire encore sa masse d’étoiles. A moins que d’ici là, une autre galaxie ne vienne perturber la géante, et pourquoi pas fusionner avec elle pour totalement changer sa destinée. Les galaxies candidates sont cependant peu nombreuses car Malin 1 réside dans un recoin relativement isolé de notre univers proche.

1. A propos des projets qui ont permis ce travail : NGVS et GUViCS sont deux grands projets qui ont obtenu des observations profondes de l’ensemble de l’amas de la vierge (plus de 100 degrés carrés) respectivement en visible/infrarouge (au CFHT) et en ultraviolet (avec le télescope GALEX). Ces projets avaient pour but de scruter les centaines de galaxies de l’amas, et d’étudier les phénomènes liés à cette structure. Ils permettent cependant beaucoup d’autres études, par exemple des galaxies en arrière-plan. C’est le cas de Malin 1 qui se trouve dans cette direction du ciel, mais à 366 Mega-parsec de nous, alors que l’amas de la Vierge est à 17 mega-parsec.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Le réchauffement climatique provoqué par les activités humaines déjà détectable il y a 180 ans dans les archives paléoclimatiques

24 août 2016 by osuadmin

Un groupe international de chercheurs a montré que le réchauffement climatique actuel associé aux activités humaines aurait débuté il y a près de deux siècles. Ce travail, publié dans la revue Nature du 25 août 2016, s’appuie sur une synthèse de données paléo-climatiques réalisée dans le cadre du programme international « Past Global Changes 2k ».

Parce que les mesures directes de température sont rares et incertaines avant 1900, la période instrumentale, pendant laquelle les relevés de thermomètres permettent de prendre la température de la planète, ne recouvre qu’une fenêtre temporelle restreinte. Pendant cette période, qui débute à la fin du 19ème siècle, le réchauffement climatique imputable à l’homme qui est en moyenne de l’ordre de 1°C est évident. Ainsi, le changement climatique anthropique est généralement considéré comme un phénomène datant du début du 20ème siècle.

Une équipe de 25 scientifiques provenant d’Australie, des États-Unis, d’Europe et d’Asie et travaillant ensemble dans le consortium « Past Global Changes 2000 years (PAGES 2K) » vient de publier une synthèse de reconstructions de la température à la surface de la planète couvrant les 5 derniers siècles. Ces données ont permis de mettre en perspective le réchauffement climatique anthropique vis-à-vis de la variabilité naturelle du climat au-delà de la période instrumentale. Les températures océaniques ont principalement été obtenues grâce à l’analyse de coraux et de sédiments marins ; celles de l’atmosphère à la surface des continents sont issues de l’analyse de cernes d’arbres, de spéléothèmes et de carottes de glace.

Comme le souligne Nerilie Abram, Professeure à l’Université nationale australienne (ANU) et auteure principale de cet article, le réchauffement climatique auquel nous assistons a commencé au tout début de la révolution industrielle. « C’est une découverte étonnante, un de ces moments lors desquels la science nous surprend. Mais les résultats sont clairs : le réchauffement climatique auquel nous assistons a débuté il y a environ 180 ans », déclare Nerilie Abram. Cette étude met donc en évidence un réchauffement plus précoce que les scientifiques ne l’avaient envisagé auparavant.

Ces résultats ont des implications importantes sur l’impact de l’activité humaine sur le climat en datant précisément le moment où il a dévié de son état naturel. De plus, « Cette synthèse unique de données à l’échelle globale montre que le réchauffement actuel n’a pas débuté de manière synchrone sur l’ensemble de la planète » souligne Marie-Alexandrine Sicre, Directrice de recherche CNRS au LOCEAN à Paris, co-auteure de l’article. En effet, le réchauffement a d’abord touché la région Arctique et les océans tropicaux, dès les années 1830, avant d’atteindre les autres régions de l’hémisphère Nord. Dans l’hémisphère Sud, comme en Australie ou en Amérique du Sud, il a fallu attendre près d’un siècle pour que le réchauffement soit détectable dans les archives paléo-climatiques », ajoute-t-elle.

Seules les données paléoclimatiques permettent de prendre le recul nécessaire de plusieurs siècles pour détecter des changements de températures aussi ténus que ceux rapportés dans cette étude. En effet, le réchauffement ayant impacté le 19ème siècle était tel qu’il n’aurait pas pu être ressenti par la population vivant à cette époque. « Les températures ont certes augmenté dès le début du 19ème siècle, mais l’émergence de ce signal, à savoir la période à partir de laquelle la magnitude du réchauffement excède celle des fluctuations naturelles des températures, ne s’est fait qu’un siècle plus tard » ajoute Guillaume Leduc, Chercheur CNRS au CEREGE à Aix-Marseille, également co-signataire de l’article. De plus, « les simulations réalisées par les modèles climatiques prenant en compte les forçages solaires, volcaniques et anthropiques, confirment ce que révèlent les données paléo-climatiques tant sur la précocité que sur l’asymétrie du réchauffement lié à l’homme ».

Ce résultat illustre l’extrême sensibilité du climat aux perturbations anthropiques. « Bien que les niveaux de gaz à effet de serre issus de l’activité humaine dans les années 1800 soient encore faibles, leur effet sur les températures est détectable dès le début de l’Ere industrielle. Le climat de la Terre réagit donc très vite à une augmentation même faible d’émission de gaz à effet de serre, et de manière détectable par les archives paléoclimatiques », remarque Helen McGregor, chercheuse à l’université de Wollongong (UW), co-auteure de cet article.

Ce travail est publié dans la dernière édition de la Nature.

Classé sous :Atmosphère, Environnement Balisé avec :Communiqué de presse, Résultat scientifique

Prévision des séismes : une technique innovante pour observer les failles sous-marines

21 juin 2016 by osuadmin

Pour surveiller un segment de la faille sismique nord-anatolienne près d’Istanbul, une équipe internationale de chercheurs, notamment du CNRS et de l’université de Bretagne occidentale, a déployé un réseau de balises au fond de la mer de Marmara. Objectif : mesurer les mouvements des fonds marins de part et d’autre de ce segment. Les données récoltées lors des six premiers mois révèlent que la faille serait bloquée au niveau de ce segment, suggérant une accumulation progressive d’énergie susceptible d’être libérée brusquement. Ce qui pourrait provoquer un séisme de forte magnitude à proximité d’Istanbul. Cette étude, issue d’une collaboration entre des chercheurs français, allemands et turcs, vient d’être publiée dans Geophysical Research Letters..

La faille nord-anatolienne, responsable de tremblements de terre destructeurs en 1999 en Turquie, est comparable à la faille de San Andreas en Californie. Elle constitue la limite des plaques tectoniques eurasiatique et anatolienne, qui se déplacent l’une par rapport à l’autre d’environ 2 cm par an. Le comportement d’un segment sous-marin de cette faille, situé à quelques dizaines de kilomètres au large d’Istanbul, en mer de Marmara, intrigue particulièrement les chercheurs, car il semble exempt de sismicité depuis le 18e siècle. Comment se comporte ce segment ? Glisse-t-il en continu, cède-t-il régulièrement, provoquant de petits séismes épisodiques de faible magnitude ou est-il bloqué, laissant présager une future rupture et donc un fort séisme ? Observer in situ le mouvement d’une faille sous-marine sur plusieurs années est un vrai défi. Pour le relever, les chercheurs testent une méthode de télédétection sous-marine innovante, à l’aide de balises acoustiques actives, autonomes et interrogeables à distance depuis la surface de la mer. Posées sur le fond marin de part et d’autre de la faille à 800 mètres de profondeur, ces balises s’interrogent à tour de rôle par paire et mesurent le temps aller-retour d’un signal acoustique entre elles. Ces laps de temps sont ensuite convertis en distances entre les balises. C’est la variation de ces distances dans le temps qui permet de détecter un mouvement des fonds marins et la déformation du réseau de balises, de déduire les déplacements de la faille. Concrètement, un réseau de dix balises françaises et allemandes a été déployé lors d’une première campagne en mer1 en octobre 2014. Les six premiers mois de données (temps de parcours, température, pression et stabilité)2 confirment les performances de la méthode. Après calculs, les données ne révèlent aucun mouvement significatif de la faille surveillée, dans la limite de résolution du réseau. Les distances entre balises, séparées de 350 à 1700 mètres, sont mesurées avec une résolution de 1,5 à 2,5 mm. Ce segment serait donc bloqué ou quasi-bloqué, et accumulerait des contraintes susceptibles de générer un séisme. L’acquisition d’information sur plusieurs années sera cependant nécessaire pour confirmer cette observation ou caractériser un fonctionnement plus complexe de cette portion de faille. Si, au-delà de cette démonstration, cette approche dite de « géodésie acoustique fond de mer » s’avère robuste sur le long terme (ici 3 à 5 ans sont envisagés dans la limite d’autonomie des batteries), elle pourrait être intégrée dans un observatoire sous-marin permanent en complément d’autres observations (sismologie, émission de bulles, …) pour surveiller in situ et en temps réel l’activité de cette faille en particulier, ou d’autres failles actives sous-marines dans le monde. Ces travaux sont menés par le Laboratoire Domaines océaniques3 (LDO, CNRS/Université de Bretagne occidentale), en collaboration avec le Laboratoire Littoral environnement et sociétés (CNRS/Université de La Rochelle), l’Institut Geomar à Kiel (Allemagne), le Centre européen de recherche et d’enseignement de géosciences de l’environnement (CNRS/Collège de France/AMU/IRD), le Laboratoire Géosciences marines de l’Ifremer, l’Eurasian Institute of Earth Sciences de l’Université Technique d’Istanbul (Turquie) et le Kandilli Observatory and Earthquake Research Institute de l’Université Bogazici d’Istanbul. Cet article est dédié à la mémoire d’Anne Deschamps, chargée de recherche CNRS au LDO, initiatrice et responsable du projet, décédée peu après avoir conduit avec succès le déploiement de ces balises.

Zones et années de rupture de la faille nord-anatolienne. Le segment sous-marin au sud d’Istanbul n’aurait pas généré de séismes majeurs depuis le 18ème siècle. Le rectangle noir situe la zone d’étude.
Crédit : © J-Y Royer / CNRS-UBO LDO

 

Réseau de balises acoustiques (françaises en rouge, allemandes en jaune) déployées en mer de Marmara, de part et d’autre d’un segment sous-marin de la faille nord-anatolienne (FNA), dont la trace présumée est soulignée par des tirets
Crédit : © J-Y Royer / CNRS-UBO LDO

Classé sous :Océan, Terre Balisé avec :Communiqué de presse, Résultat scientifique

Un impact géant : le mystère de l’origine des lunes de Mars enfin percé

1 juillet 2016 by osuadmin

D’où viennent Phobos et Deimos, les deux petits satellites naturels de Mars ? Longtemps, leur forme a fait croire qu’ils étaient des astéroïdes capturés par Mars. Cependant la forme et l’orientation de leur orbite contredisent cette hypothèse. Deux études indépendantes et complémentaires apportent une réponse à cette question. Dans l’une, sous presse dans The Astrophysical Journal, des chercheurs majoritairement du CNRS et d’Aix-Marseille Université 1 excluent la capture d’astéroïdes et montrent que le seul scénario compatible avec les propriétés de surface de Phobos et Deimos est celui d’un impact géant. Dans l’autre étude, grâce à des simulations numériques de pointe, une équipe belgo-franco-japonaise montre comment ces satellites ont pu se former à partir des débris d’une collision titanesque entre Mars et un embryon de planète trois fois plus petit. Ces travaux, fruit d’une collaboration entre des chercheurs de l’Université Paris Diderot et de l’Observatoire royal de Belgique, en collaboration avec le CNRS, l’Université de Rennes 1 2 et l’institut japonais ELSI, sont publiés le 4 juillet 2016 dans la revue Nature Geoscience.

L’origine des deux lunes de Mars, Phobos et Deimos, restait un mystère. Par leur petite taille et leur forme irrégulière, elles ressemblent beaucoup à des astéroïdes, mais on ne comprend pas comment Mars aurait pu les « capturer » pour en faire des satellites en orbite presque circulaire, dans le plan équatorial de la planète. Selon une théorie concurrente, Mars aurait subi à la fin de sa formation un impact géant avec un embryon de planète ; mais pourquoi les débris d’un tel impact auraient-ils formé deux petits satellites plutôt qu’une énorme lune, comme celle de la Terre ? Une troisième possibilité serait que Phobos et Deimos se soient formés en même temps que Mars, ce qui impliquerait qu’ils aient la même composition que leur planète ; cependant, leur faible densité semble contredire cette hypothèse. Aujourd’hui, deux études indépendantes viennent conforter la théorie de l’impact géant.

Dans l’une d’elles, une équipe de recherche belgo-franco-japonaise propose pour la première fois un scénario complet et cohérent de formation de Phobos et Deimos, qui seraient nés des suites d’une collision entre Mars et un corps primordial trois fois plus petit, 100 à 800 millions d’années après le début de la formation de la planète. Selon ces chercheurs, les débris de cette collision auraient formé un disque très étendu autour de Mars, formé d’une partie interne dense, composée de matière en fusion et d’une partie externe très fine, majoritairement gazeuse. Dans la partie interne de ce disque se serait d’abord formée une lune mille fois plus massive que Phobos, aujourd’hui disparue. Les perturbations gravitationnelles créées dans le disque externe par cet astre massif auraient catalysé l’assemblage de débris pour former d’autres petites lunes plus lointaines. Au bout de quelques milliers d’années, Mars se serait alors retrouvée entourée d’un cortège d’une dizaine de petites lunes et d’une énorme lune. Plusieurs millions d’années plus tard, une fois le disque de débris dissipé, les effets de marée avec Mars auraient fait retomber sur la planète la plupart de ces satellites, dont la très grosse lune. Seules ont subsisté les deux petites lunes les plus lointaines, Phobos et Deimos (voir l’infographie en fin de communiqué).

À cause de la diversité des phénomènes physiques mis en jeu, aucune simulation numérique n’est capable de modéliser l’ensemble du processus. L’équipe de Pascal Rosenblatt et Sébastien Charnoz a dû alors combiner trois simulations de pointe successives pour rendre compte de la physique de l’impact géant, de la dynamique des débris issus de l’impact et de leur assemblage pour former des satellites, et enfin de l’évolution à long terme de ces satellites.

Dans l’autre étude, des chercheurs du Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université) excluent la possibilité d’une capture, sur la base d’arguments statistiques et en se fondant sur la diversité de composition des astéroïdes. De plus, ils montrent que la signature lumineuse émise par Phobos et Deimos est incompatible avec celle du matériau primordial qui aurait pu former Mars (des météorites de la classe des chondrites ordinaires, des chondrites à enstatite et/ou des angrites). Ils s’attachent donc au scénario de l’impact. Ils déduisent de cette signature lumineuse que les satellites sont composés de poussières fines (de taille inférieure au micromètre ).

Or, la très petite taille des grains à la surface de Phobos et Deimos ne peut pas être expliquée uniquement comme la conséquence d’une érosion due au bombardement par les poussières interplanétaires, d’après ces chercheurs. Cela signifie que les satellites sont composés dès l’origine de grains très fins, qui ne peuvent se former que par condensation du gaz dans la zone externe du disque de débris (et non à partir du magma présent dans la zone interne). C’est un point sur lequel s’accordent les deux études. Par ailleurs, une formation des lunes de Mars à partir de ces grains très fins pourrait être responsable d’une forte porosité interne, ce qui expliquerait leur densité étonnamment faible.

La théorie de l’impact géant, corroborée par ces deux études indépendantes, pourrait expliquer pourquoi l’hémisphère nord de Mars a une altitude plus basse que le sud : le bassin boréal est sans doute la trace d’un impact géant, comme celui qui a in fine donné naissance à Phobos et Deimos. Elle permet aussi de comprendre pourquoi Mars a deux satellites et non un seul comme notre Lune, aussi née d’un impact géant. Ce travail suggère que les systèmes de satellites formés dépendent de la vitesse de rotation de la planète, puisqu’à l’époque la Terre tournait très vite sur elle-même (en moins de quatre heures) alors que Mars tournait six fois plus lentement.

De nouvelles observations permettront bientôt d’en savoir plus sur l’âge et la composition des lunes de Mars. En effet, l’agence spatiale japonaise (JAXA) a décidé de lancer en 2022 une mission, baptisée Mars Moons Exploration (MMX), qui rapportera sur Terre en 2027 des échantillons de Phobos. L’analyse de ces échantillons pourra confirmer ou infirmer ce scénario. L’Agence spatiale européenne (ESA), en association avec l’agence spatiale russe (Roscosmos), prévoit une mission similaire en 2024.

Ces recherches ont bénéficié du soutien de l’IPGP, du Labex UnivEarthS, d’ELSI, de l’Université de Kobe, et de l’Idex A*MIDEX.

Chronologie des événements qui auraient donné naissance à Phobos et Deimos.
Mars est percutée par une protoplanète trois fois plus petite (1). Un disque de débris se forme en quelques heures. Les briques élémentaires de Phobos et Deimos (grains de taille inférieure au micromètre) se condensent directement à partir du gaz dans la partie externe du disque (2). Le disque de débris produit rapidement une lune proche de Mars, qui s’éloigne et propage ses deux zones d’influence comme des vagues (3), ce qui provoque en quelques millénaires l’accrétion des débris plus éloignés en deux petites lunes, Phobos et Deimos (4). Sous l’effet des marées soulevées par Mars, la grosse lune retombe sur la planète en quelques millions d’années (5), tandis que Phobos et Deimos, moins massifs, rejoignent leur position actuelle dans les milliards d’années qui suivent (6).
Crédit : Antony Trinh / Observatoire Royal de Belgique
Vue d’artiste de l’impact géant qui aurait donné naissance à Phobos et Deimos et au bassin d’impact Boréalis.
L’impacteur devait faire environ le tiers de la taille de Mars. A cette époque, Mars était jeune et possédait peut-être une atmosphère plus épaisse et de l’eau liquide en surface.
Crédit : Université Paris Diderot / Labex UnivEarthS
1. Laboratoires français impliqués : Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université), Institut de planétologie et d’astrophysique de Grenoble (CNRS/Université Grenoble Alpes), Centre européen de recherche et d’enseignement de géosciences de l’environnement (CNRS/Aix-Marseille Université/IRD/Collège de France).
2. Laboratoires français impliqués : Institut de physique du globe de Paris (CNRS/IPGP/Université Paris Diderot), Institut de physique de Rennes (CNRS/Université de Rennes 1).

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Fusion majeure de deux galaxies spirales : Destruction et reconstruction des disques galactiques

15 avril 2016 by osuadmin

Un groupe de chercheurs et d’ingénieurs informaticiens du Laboratoire d’Astrophysique de Marseille (LAM / CNRS – Université d’Aix Marseille) a effectué des simulations 1 spécifiques utilisant des ordinateurs nationaux de type « supercalculateurs » pour étudier le résultat d’une fusion de deux galaxies à disque de masses environ égales et situées à des redshifts intermédiaires – entre z 1.5 et 0.5). Les résultats particulièrement intéressants de cette étude ouvrent une toute nouvelle perspective pour la formation des disques galactiques.

La formation des galaxies comme notre Voie Lactée compte parmi les plus grandes questions auxquelles les astronomes tentent de répondre. Le processus est toutefois difficile à observer. En revanche, des simulations utilisant des super-ordinateurs nationaux permettent aux scientifiques de comprendre les processus mis en jeu dans la formation des galaxies. Une équipe du Laboratoire d’Astrophysique de Marseille travaille sur ces modélisations. Une de leurs thématiques de recherche consiste à mettre en évidence le fruit de collisions de galaxies aux caractéristiques très spécifiques. Ils ont ainsi simulé la collision de deux galaxies à disque de masses environ égales et situées à des redshifts intermédiaires (entre z 1.5 et 0.5). Les deux galaxies avant collision représentent au mieux des galaxies situées à ces redshifts, étant plus petites et plus riches en gaz que les galaxies qui sont proches de nous. Point important, leurs halos sont constitués tant de matière noire que de gaz chaud.

Le disque d’une galaxie formée lors d’une fusion majeure vu de face (en haut) et par la tranche (en bas).
On y remarque tant des spirales internes que des spirales externes, ainsi qu’une barre et un bulbe en forme de boite. Les images de gauche représentent la totalité du disque, tandis que les images de droite sont un agrandissement de la partie centrale.
Crédit : LAM

L’évolution au cours de la fusion est la suivante :

  • Lors de la collision, les disques de ces galaxies sont détruits et leurs étoiles, subissant une relaxation violente, forment un bulbe classique, qui sera le centre de la nouvelle galaxie.
  • La majorité des étoiles se formant vers la fin de la période de collision ou juste après forment un disque épais.
  • Ensuite, un nouveau disque, mince et froid, commence à se former principalement par accrétion du gaz initialement dans le halo.

Ainsi une nouvelle galaxie se forme, et les simulations obtenues par cette équipe montrent que les étoiles les plus vieilles doivent se trouver dans le bulbe classique, suivies par les étoiles du disque épais et enfin par les étoiles du disque mince. Les étoiles les plus jeunes se trouvent dans les bras spiraux, et au centre dans un second bulbe (non classique), en forme de disque.

Grâce à ces simulations, les différentes étapes de l’évolution de la nouvelle galaxie, depuis sa formation lors de la fusion jusqu’au temps présent (z=0), ont pu être observées. La très haute résolution des simulations a non seulement permis des comparaisons détaillées des propriétés de ces galaxies simulées avec celles des galaxies observées, mais a de plus mis en évidence une parfaite adéquation avec ce que nous pouvons observer dans notre univers local 2. En particulier, la distribution de la masse et la distribution des vitesses correspondent bien.

La morphologie des structures du disque est également en très bon accord avec les observations, montrant un disque épais en plus du disque mince, des spirales et des anneaux de la bonne taille et forme, et une barre avec des anses aux deux extrémités, et, vu de profil, un bulbe en forme de boite ou de cacahuète. Il est également à noter que les galaxies spirales ainsi formées peuvent avoir un bulbe classique avec une masse très faible, pouvant même être inférieure à 10% de la matière baryonique totale, ce qui est requis par exemple par les observations de notre Galaxie.

Lia Athanassoula, astronome au LAM et premier auteur de cette étude conclut : « Nos simulations démontrent que la fusion de deux galaxies spirales peut donner naissance à une nouvelle galaxie spirale. Ce résultat particulièrement intéressant met donc en évidence un scénario possible pour la formation des galaxies semblables à la nôtre. A partir de là nous allons pouvoir étudier les plus importantes propriétés des galaxies à disque. »

1. Des simulations N-corps avec hydrodynamique.
2. En particulier, la courbe de rotation est plate dans les parties extérieures et pas trop concentrée dans les parties centrales, grâce à la modélisation dans les simulations du noyau actif de la galaxie. Également le profil radial de la densité projetée, qui est — d’après la nomenclature des observateurs — de Type II, avec des valeurs réalistes pour les longueurs d’échelle tant intérieure qu’extérieure et pour le rayon qui sépare le disque intérieur et extérieur.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Rosetta : l’âge des comètes dévoilé grâce à l’identification de leur type de glace

9 mars 2016 by osuadmin

Les glaces enfouies à l’intérieur de la comète 67P/Churyumov-Gerasimenko se trouvent essentiellement sous forme cristalline, ce qui implique qu’elles seraient issues de la nébuleuse primitive, et donc du même âge que notre système solaire. Cette découverte a été obtenue par une équipe internationale pilotée par un chercheur du LAM 1 (CNRS/Aix Marseille Université) et comprenant également des chercheurs du laboratoire J.-L. Lagrange (OCA/CNRS/Université Nice Sophia Antipolis) et du Centre de recherches pétrographiques et géochimiques (CNRS/ Université de Lorraine), avec le soutien du CNES. Leurs résultats proviennent de l’analyse de données fournies par l’instrument Rosina 2, placé à bord de la sonde Rosetta de l’Agence spatiale européenne. Ces travaux ont été publiés le 8 mars 2016 dans The Astrophysical Journal Letters.

La mission Rosetta nous dévoile peu à peu les secrets des comètes et a permis de trancher une question vieille de plusieurs décennies : la nature de leurs glaces. Deux grandes hypothèses s’affrontaient jusqu’ici : celle d’une glace cristalline, où les molécules d’eau sont arrangées de manière périodique, et celles d’une glace amorphe, où les molécules d’eau sont désordonnées. Un problème rendu d’autant plus sensible par ses implications sur l’origine et la formation des comètes et du système solaire.

C’est l’instrument Rosina de la sonde Rosetta qui aura permis de répondre à cette question. Ce spectromètre de masse a d’abord mesuré, en octobre 2014, les abondances du diazote (N2), du monoxyde de carbone (CO) et de l’argon (Ar) dans la glace de Tchouri. Ces données ont été comparées à celles obtenues en laboratoire dans des expériences sur de la glace amorphe, ainsi qu’à celles de modèles décrivant la composition d’hydrates de gaz, un type de glace cristalline où les molécules d’eau peuvent emprisonner des molécules de gaz. Les proportions de diazote et d’argon retrouvées sur Tchouri correspondent bien à celles du modèle des hydrates de gaz alors que la quantité d’argon déterminée sur « Tchouri » est cent fois inférieure à celle que la glace amorphe peut piéger. La glace de la comète possède donc bien une glace de structure cristalline.

Cette découverte est capitale car elle permet de dater la naissance des comètes. En effet, les hydrates de gaz sont des glaces cristallines qui se sont formées dans la nébuleuse primitive du système solaire, à partir de la cristallisation de grains de glace d’eau et de l’adsorption de molécules de gaz sur leurs surfaces au cours du lent refroidissement de la nébuleuse. Si les comètes sont composées de glace cristalline, cela signifie qu’elles se sont forcément formées en même temps que le système solaire, et non auparavant dans le milieu interstellaire. La structure cristalline des comètes prouve également que la nébuleuse primitive était suffisamment chaude et dense pour sublimer la glace amorphe qui provenait du milieu interstellaire. Les hydrates de gaz agglomérés par Tchouri ont dû se former entre -228 et -223 °C pour reproduire les abondances observées. Ces travaux confortent également les scénarios de formation des planètes géantes, ainsi que de leurs lunes, qui nécessitent l’agglomération de glaces cristallines.

Rapports N2/CO and Ar/CO mesurés par Rosina
Le noyau de la comète « Tchouri » vue par la sonde Rosetta
Crédit : ESA
1. Laboratoire au sein de l’Institut Pythéas
2. Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Pages provisoires omises …
  • Page 18
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Joanna Charton récompensée par le Prix de thèse AMU 2024 – Campagne 2025
  • Deux chercheurs du CEREGE participent à une étude internationale sur le rôle clé des plantons calcifiants dans le climat
  • Concours « Laisse ton empreinte »
  • Suivre la croissance complexe des structures cosmiques avec Euclid
  • L’âge du carbone des sols corrigé pour estimer sa vraie dynamique

Commentaires récents

Aucun commentaire à afficher.

Archives

  • octobre 2025
  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter