• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

osuadmin

Festival de l’été Astro

10 juillet 2024 by osuadmin

Laissez-vous guider par les médiateurs et médiatrices scientifiques du Centre Astro pour la visite de l’Observatoire de Haute-Provence (CNRS), haut lieu de la recherche en astrophysique. Vous accéderez à la coupole abritant le télescope de 1.93m qui a permis en 1995 la découverte de la toute première exoplanète, à l’origine du prix Nobel de physique 2019.

Les conférences de nos chercheurs :

Mercredi 24 juillet – 18:00 / Ecologie et société, je t’aime moi non plus
Thierry Tatoni, Professeur à l’Université d’Aix Marseille – Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE) CNRS – IRD – Avignon Université.

Mercredi 31 juillet – 18:00 / Les futurs très grands télescopes, au sol et dans l’espace
Marc Ferrari, Astronome, Directeur de l’OHP, Directeur-Adjoint de l’Institut Pythéas.

Mercredi 7 août – 18:00 / Dernières vues sur les exoplanètes avec le télescope James Webb
Elodie Choquet, Astronome adjointe à l’Université d’Aix Marseille et au Laboratoire d’Astrophysique de Marseille (LAM – CNRS).

Mercredi 21 août – 18:00 / Les mondes océans : l’eau dans le système solaire et au-delà
Olivier Mousis, Professeur à Aix Marseille Université Astronome au Laboratoire d’Astrophysique de Marseille – Institut Pythéas – CNRS / Directeur de l’Institut Origines.

Mercredi 28 août – 18:00 / La forêt méditerranéenne face aux sécheresses récurrentes
Elena Ormeno-Lafuente, Chercheuse CNRS – IMBE (Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale) Directrice scientifique de la plateforme AnaEE « O3HP » (Oak Observatory at OHP)

Classé sous :Univers Balisé avec :Brève

Job d’étudiant

9 juillet 2024 by osuadmin

Tu souhaites accueillir, accompagner les étudiants et dynamiser ton campus ?

Alors n’attends plus et rejoins les équipes du BVE !

Plus d’infos, auprès des Bureaux de la Vie Étudiante (BVE)

Liste des postes sur : https://drh.univ-amu.fr/public_content/emplois-etudiants

Postes réservés à partir de la deuxième année d’études.

Classé sous :Non classé Balisé avec :Enseignement

Le site de construction d’un navire antique révélé par la géologie des carbonates

8 juillet 2024 by osuadmin

Une équipe interdisciplinaire incluant des scientifiques du CNRS a analysé le lest de l’épave du navire romain Ilovik-Paržine 1, trouvée en 2016 dans la baie de Paržine, sur la côte de la petite île croate d’Ilovik, en mer Adriatique. L’analyse des roches carbonatées a révélé qu’elles provenaient probablement de la région de Brindisi, en Italie. Cette découverte suggère que le navire a été construit dans un chantier naval de cette ville antique ou de ses environs. Les résultats ont été publiés dans Journal of Archaeological Science: Reports.

Entre 2018 et 2022, les fouilles menées par le Croatian Conservation Institute de Zagreb et le CCJ (programme « Adriboats ») ont révélé que le navire, mesurant environ 21,5 mètres de long et 6,5 mètres de large, transportait du bois et des amphores à vin. Les datations au radiocarbone et la typologie des céramiques ont établi une date du naufrage entre 170 et 130/120 av. J.-C.

A) Compositions isotopiques (carbone et oxygène) des carbonates du lest d’Ilovik-Paržine-1 et de calcarénites quartzeuses des côtes de l’Adriatique et de la Mer Ionienne. B) Microfaciès de calcarénites quartzeuses du lest et du bassin de Brindisi. © Fournier, F., Léonide, P., Marié, L., Quillevéré, F., Margerel, J.-P., Miholjek, I., Dugonjič, P., Carre, M.-B., Cavassa, L., Morsilli, M., Boetto, G. (2024)
A) Compositions isotopiques (carbone et oxygène) des carbonates du lest d’Ilovik-Paržine-1 et de calcarénites quartzeuses des côtes de l’Adriatique et de la Mer Ionienne. B) Microfaciès de calcarénites quartzeuses du lest et du bassin de Brindisi. © Fournier, F., Léonide, P., Marié, L., Quillevéré, F., Margerel, J.-P., Miholjek, I., Dugonjič, P., Carre, M.-B., Cavassa, L., Morsilli, M., Boetto, G. (2024)

 

Les analyses sédimentologiques, pétrographiques, micropaléontologiques et géochimiques des roches du lest ont montré que la quasi-totalité du lest est constituée de calcarénites quartzeuses, d’âge Pléistocène1 supérieur, déposées en milieu marin côtier. Une mission de terrain visant à analyser les formations marines du Pléistocène des côtes adriatiques et ioniennes de l’Italie a permis une comparaison directe avec les roches du lest.

La grande homogénéité de la composition du lest du navire suggère qu’il s’agit d’un lest permanent, chargé lors de la construction du navire dans un chantier naval à Brindisi ou dans un port voisin. Une seconde hypothèse serait de considérer Brindisi, ou un port voisin, comme port d’attache permanent de ce navire, d’où le volume de lest était ajusté avant chaque voyage. Le lieu du naufrage indique que le navire se dirigeait probablement vers une ville du nord de l’Adriatique comme l’importante colonie d’Aquilée.

1. Première époque géologique de la période Quaternaire. Elle s'étend de 2,58 millions d'années à 11 700 ans avant le présent et précède l'Holocène, toujours en cours actuellement.

Classé sous :Surface continentale, Terre Balisé avec :Communiqué de presse, Résultat scientifique

L’influence de la magnétosphère de Ganymède observée jusque dans son empreinte aurorale sur Jupiter

1 juillet 2024 by osuadmin

Jupiter présente les aurores les plus brillantes du système solaire. L’une des particularités de cette planète, qu’elle partage avec Saturne, est également de posséder des émissions aurorales causées par trois de ses plus grosses lunes : Io, Europe, et Ganymède. Ces émissions distinctes appelées « empreintes aurorales » sont visibles localement dans plusieurs domaines de longueur d’onde. Celles-ci sont créées par des particules chargées, majoritairement des électrons, qui se propagent le long des lignes de champ magnétique reliant les lunes à Jupiter. En précipitant dans l’atmosphère de la planète géante, ces électrons induisent des aurores caractéristiques, étudiées depuis les années 2000 grâce notamment aux observations du télescope spatial Hubble dans le domaine ultraviolet.

Depuis Juillet 2016, la sonde Juno survole les pôles de Jupiter à seulement quelques milliers de kilomètres d’altitude et permet ainsi une caractérisation fine de la structure des empreintes aurorales des lunes. L’analyse combinée des données obtenues à bord de Juno par le spectrographe UVS et le spectromètre JADE pour lequel l’IRAP a contribué au système optique électrostatique, permet de sonder à la fois les propriétés de ces émissions mais également celles des particules chargées qui les induisent.

En concentrant leur étude sur l’empreinte aurorale de Ganymède, la plus grande lune du système solaire et la seule générant son propre champ magnétique, une équipe incluant des scientifique du CNRS Terre & Univers, en collaboration étroite avec les équipes de la mission Juno (SwRI, Princeton University), a entre autres mis en évidence l’influence de la mini-magnétosphère de Ganymède sur son empreinte aurorale. Ils ont ainsi confirmé que la taille des tubes de flux, ces lignes de champ magnétique de forme tubulaires reliant les lunes à l’atmosphère de Jupiter et dans lesquels se propagent des ondes électromagnétiques et des particules chargées, est significativement plus grande que celles rapportées à Io et Europe par des études précédentes. Les observations de l’empreinte aurorale par Juno fournissent ainsi une nouvelle méthode d’étude de la mini-magnétosphère de Ganymède, qui sera explorée in-situ de manière inédite par la mission JUICE de l’ESA actuellement en route vers Jupiter.

Juno (orbite en blanc à gauche) croise un tube de flux de la lune Ganymède. Sur le pôle sud de Jupiter, les empreintes aurorales des trois lunes sont observées simultanément en ultraviolet par l’instrument Juno/UVS et représentées ici en fausses couleurs. Celles-ci sont composées de deux spots brillants apparaissant en blanc, suivis d’une émission diffuse appelée queue aurorale. © Juno-UVS, CDPP-Inetum
Juno (orbite en blanc à gauche) croise un tube de flux de la lune Ganymède. Sur le pôle sud de Jupiter, les empreintes aurorales des trois lunes sont observées simultanément en ultraviolet par l’instrument Juno/UVS et représentées ici en fausses couleurs. Celles-ci sont composées de deux spots brillants apparaissant en blanc, suivis d’une émission diffuse appelée queue aurorale. © Juno-UVS, CDPP-Inetum

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

La mission SVOM, destinée à l’étude des plus lointaines explosions d’étoiles, a été lancée avec succès

22 juin 2024 by osuadmin

Les sursauts gamma constituent les phénomènes les plus énergétiques de l’Univers : ils résultent des plus lointaines explosions d’étoiles massives mais également de la fusion d’objets compacts comme les étoiles à neutrons. D’une durée très fugace, parfois quelques millièmes de secondes, ces éclairs proviennent d’une libération colossale d’énergie, équivalente à celle générée par le Soleil durant toute sa vie. Certains sursauts gamma sont soupçonnés de survenir lorsque deux étoiles à neutrons, ou une étoile à neutrons et un trou noir, gravitent l’un autour de l’autre, avant de se rapprocher et de fusionner. D’autres sont liés à la mort soudaine d’étoiles très massives au sein de galaxies lointaines. Cette lumière a parfois été émise alors que notre Univers avait moins d‘un milliard d’années. Dès lors, avant d’arriver jusqu’à nous, la lumière de ces astres traverse plusieurs milliards d’années-lumière et se charge ainsi de l’empreinte des multiples époques de l’Univers. En d’autres termes, étudier les sursauts gamma contribue à mieux comprendre la formation de notre Univers. 

La fugacité des sursauts gamma rend leur observation très complexe. Au cours de l’explosion, cette brève et intense lueur gamma est suivie en général par une émission de rayons X ainsi que par un rayonnement de lumière visible qui peuvent être observés pendant quelques jours. Pour détecter, localiser et étudier avec efficacité tous ces phénomènes, SVOM (Space-based multi-band astronomical Variable Objects Monitor), possède quatre instruments : deux conçus et réalisés par la Chine (GRM et VT) et deux par la France :

  • ECLAIRs, un télescope X et gamma à grand champ de vue pour détecter et localiser les sursauts gamma dans la bande des rayons X et des rayons gamma de basse énergie. Ce télescope à grand champ couvre un sixième de l’ensemble de la voûte céleste. Il détectera les sursauts gamma et fournira leur position avec une précision d’une dizaine de minutes d’arc, équivalente au tiers du diamètre apparent de la Lune. Le télescope ECLAIRs est développé sous maîtrise d’œuvre du CNES avec des laboratoires français sous tutelles du CEA, du CNRS et de ses partenaires, notamment l’Institut de recherche en astrophysique et planétologie (CNES/CNRS/Université Toulouse III – Paul Sabatier), l’Institut de recherche sur les lois fondamentales de l’Univers (CEA) et le laboratoire « Astroparticule et cosmologie » (CNRS/Université Paris Cité).
  • MXT, un télescope sensible aux rayons X de basse énergie pour l’observation des sursauts gamma. Avec son petit champ de vue (57×57 minutes d’arc), il détectera l’émission rémanente des sursauts gamma et en fournira la position sur la voûte céleste avec une précision supérieure à 30 secondes d’arc (soit le diamètre apparent de Jupiter) dans 50% des cas. Il est développé sous maîtrise d’œuvre du CNES, avec le CEA et le CNRS à travers, notamment, le Laboratoire de physique des deux infinis – Irène Joliot-Curie (CNRS/ Université Paris-Saclay)1. L’Observatoire de Strasbourg a également contribué à son développement, en particulier pour l’outil de traitement de données du télescope et les bancs de simulation pour les pipelines scientifiques.
    Concrètement, quand un sursaut gamma sera détecté par ECLAIRs, le satellite se réorientera en quelques minutes pour viser précisément la zone de l’événement localisé et permettre ainsi aux instruments ayant un champ de vue étroit, notamment MXT, d’observer à leur tour ce sursaut. L’information liée au positionnement du sursaut gamma sur la voûte céleste sera également transmise au sol en moins d’une minute, grâce à un réseau d’antennes déployé tout autour de l’équateur et des tropiques, jusqu’à deux centres de veille établis en France et en Chine. Ces derniers pourront alors lancer des investigations complémentaires et le cas échéant alerter les grands télescopes terrestres afin qu’ils puissent à leur tour s’orienter vers la zone du ciel et observer le sursaut gamma. 

Pour compléter les observations faites depuis l’espace, les scientifiques de la mission SVOM disposent d’une panoplie d’instruments d’observation terrestres dédiés au projet. L’une des pièces maîtresses de ce dispositif est le télescope robotique COLIBRI spécialement développé pour l’occasion et fruit d’une collaboration étroite entre la France, où le CNRS, l’Université d’Aix-Marseille et le CNES ont joué un rôle essentiel, et le Mexique (UNAM et CONACHyT). Ce télescope offre des performances uniques en termes de sensibilité, rapidité et couverture spectrale qui le rendent unique au niveau mondial. C’est cette synergie étroite entre le sol et l’espace, couplée au caractère multi-longueurs d’ondes des observations, qui constitue la grande prouesse scientifique et technique de la mission SVOM.

La mission, le lancement, le satellite et les opérations de la mission SVOM sont sous responsabilité chinoise. La conception et la réalisation des instruments et des composantes sol sont partagées entre la Chine et la France. Le CNES est le responsable programmatique de la mission et le responsable technique du projet, maitre d’œuvre des instruments ECLAIRs et MXT, en partenariat avec les laboratoires du CEA, du CNRS et de leurs partenaires qui assurent en outre la responsabilité scientifique du projet.

Philippe Baptiste, président-directeur général du CNES, commente : « La participation essentielle du CNES à la mission SVOM avec les deux instruments innovants témoigne une nouvelle fois de la force de notre collaboration internationale pour mener à bien des découvertes scientifiques de grande ampleur. Cette mission nous permettra de recueillir des données très précieuses sur les explosions d’étoiles les plus puissantes de notre Univers et ainsi de mieux comprendre sa formation. »

Antoine Petit, président-directeur général du CNRS, indique : « Je tiens à féliciter les femmes et les hommes, impliqués dans la réalisation de cette mission, en particulier les ingénieurs et les chercheurs des laboratoires du CNRS et de ses partenaires, qui ont œuvré à cette réussite. Le lancement de SVOM dote nos scientifiques d’un observatoire absolument inédit qui sera capable de sonder les phénomènes les plus violents de l’Univers. »

François Jacq, administrateur général du CEA, déclare : « Le CEA est très fier de contribuer à ce projet spatial en apportant son savoir-faire en terme de conception, d’intégration et de qualification des instruments spatiaux ainsi qu’en portant la responsabilité scientifique de la mission pour la France. Nous avons hâte de recevoir et analyser les premières alertes de SVOM à l’automne, qui vont ouvrir une nouvelle fenêtre sur le moteur des objets les plus énergétiques de l’univers. C’est aussi un magnifique exemple de science ouverte, avec un partage instantané des données avec la communauté scientifique internationale. »

1. Ont été également impliqués le laboratoire Astrophysique instrumentation et modélisation (CNRS/CEA/Université Paris Cité), l’Institut d’astrophysique de Paris (CNRS/Sorbonne Université), le Laboratoire d’astrophysique de Marseille (CNRS/CNES/Aix-Marseille Université), l’Observatoire astronomique de Strasbourg (CNRS/Université de Strasbourg), le Centre de physique des particules de Marseille (CNRS/Aix-Marseille Université), le laboratoire Galaxies, étoiles, physique et instrumentation (Observatoire de Paris – PSL/CNRS), le Laboratoire Univers et particules de Montpellier (CNRS/Université de Montpellier).

Classé sous :Univers Balisé avec :Brève

Imager des planètes lointaines : la france coopère avec la NASA pour un démonstrateur embarqué sur le télescope Nancy Grace Roman

18 juin 2024 by osuadmin

Parmi la flotte de télescopes destinés à observer et mieux comprendre l’Univers, le futur télescope spatial Nancy Grace Roman, développé par la NASA, va permettre de grandes avancées dans le domaine de la cosmologie et de la planétologie. Le télescope embarquera un coronographe, démonstrateur technologique capable de détecter et étudier les exoplanètes similaires à Jupiter dans notre Système solaire, en mesurant de manière directe la lumière de leur étoile qui se reflète sur le sommet de leur atmosphère en direction de la Terre. L’instrument permettra d’atténuer le signal de l’étoile d’un facteur de plus de 100 millions pour révéler le signal extrêmement faible de ses planètes voisines. L’instrument de démonstration technologique a récemment quitté le Jet Propulsion Laboratory de la NASA pour le Goddard Space Flight Center où il rejoindra le reste de l’observatoire spatial en vue d’un lancement au plus tard en mai 2027.

Le CNES et le Laboratoire d’astrophysique de Marseille (LAM – Aix-Marseille Université, CNRS, CNES) ont été sollicités par la NASA pour fournir des optiques de très haute qualité, développées par le LAM. Grâce à ce démonstrateur et à ses performances, Roman va permettre pour la première fois de détecter cette lumière réfléchie dans les longueurs d’ondes visibles afin d’étudier la composition des atmosphères de ces lointaines exoplanètes et ainsi mieux comprendre leur formation. Les équipes de recherche françaises sont largement impliquées dans la préparation technique et scientifique de la mission et pourront ainsi accéder aux données lorsque le satellite sera en vol. En plus des fournitures des miroirs du coronographe, le CNES et le CNRS participent activement aux activités de planification des observations, de préparation des outils d’analyse et d’interprétation des données, ainsi que de planification de la phase de vérification en vol de l’instrument qui aura lieu dans les trois mois suivant le lancement. Le coronographe de Roman prépare également de futures missions de la NASA et de l’ESA, capables de détecter et d’étudier des planètes habitables. Pour ces missions, la qualité des optiques devra encore être améliorée d’un facteur 10 et les développements technologiques nécessaires sont d’ailleurs déjà en cours au LAM.

L’instrument coronographique s’annonce très prometteur. Avant son transfert, celui-ci a subi le test le plus complet de ses capacités de blocage de la lumière des étoiles, ce que les ingénieurs appellent « creuser la zone sombre ». L’instrument coronographique a démontré pleinement ses performances, notamment grâce aux optiques françaises.

Des coronographes munis de masques volent déjà dans l’espace, mais ils n’ont pas la capacité de détecter une exoplanète semblable à la Terre. Depuis un autre système stellaire, notre planète apparaîtrait environ 10 milliards de fois moins lumineuse que le Soleil et les deux sont extrêmement proches l’un de l’autre. Par conséquent, essayer d’obtenir une image directe de la Terre reviendrait à essayer de voir une luciole à côté d’un phare à une distance de 5 000 kilomètres. Avec les technologies coronographiques actuelles, même l’éblouissement d’une étoile masquée écrase une planète semblable à la Terre.

Le coronographe Roman fera la démonstration de techniques permettant d’éliminer davantage de lumière stellaire indésirable que les coronographes spatiaux actuels, grâce à l’utilisation de plusieurs composants mobiles. Ces éléments en feront le premier coronographe « actif » à voler dans l’espace. Ses principaux outils sont deux miroirs déformables, chacun d’un diamètre de 5 centimètres, soutenus par plus de 2 000 minuscules actionneurs pistons qui se déplacent vers le haut et vers le bas. Les pistons travaillent ensemble pour modifier la forme des miroirs déformables afin qu’ils puissent compenser la lumière parasite indésirable qui se répand sur les bords des masques. Les miroirs déformables permettent également de corriger les imperfections des autres optiques du télescope Roman. Bien qu’elles soient trop petites pour affecter les autres mesures très précises du télescope, ces imperfections peuvent envoyer de la lumière parasite dans la zone sombre. Des modifications précises de la forme de chaque miroir déformable, imperceptibles à l’œil nu, compensent ces imperfections. Les résultats obtenus par la caméra du coronographe montrent donc une région en forme d’anneau beignet autour de l’étoile centrale, qui s’assombrit lentement au fur et à mesure que l’équipe éloigne la lumière de l’étoile, d’où le surnom de « creuser le trou noir ». Dans l’espace, une exoplanète tapie dans cette région sombre apparaîtrait lentement au fur et à mesure que l’instrument fait son travail avec ses miroirs déformables.

Plus de 5 000 planètes ont été découvertes et confirmées autour d’autres étoiles au cours des 30 dernières années. La plupart d’entre elles ont été détectées indirectement, c’est-à-dire que leur présence est déduite de la façon dont elles affectent leur étoile parente. Il est beaucoup plus facile de déceler ces changements relatifs dans l’étoile parente que de voir le signal d’une planète beaucoup moins lumineuse. Moins de 70 exoplanètes ont fait l’objet d’une image directe. Les planètes qui ont été directement imagées à ce jour ne ressemblent pas à la Terre, il s’agit de planète gazeuses beaucoup plus grosses, plus chaudes et plus éloignées de leur étoile mère. Ces caractéristiques les rendent plus faciles à détecter mais aussi moins propices à la vie telle que nous la connaissons. Pour rechercher des mondes potentiellement habitables, les scientifiques ont besoin d’images de planètes qui sont non seulement des milliards de fois moins lumineuses que leur étoile, mais qui orbitent également à la bonne distance pour que de l’eau liquide puisse exister à la surface de la planète (un précurseur du type de vie que l’on trouve sur Terre).

Classé sous :Univers Balisé avec :Communiqué de presse

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Pages provisoires omises …
  • Page 55
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Joanna Charton récompensée par le Prix de thèse AMU 2024 – Campagne 2025
  • Deux chercheurs du CEREGE participent à une étude internationale sur le rôle clé des plantons calcifiants dans le climat
  • Concours « Laisse ton empreinte »
  • Suivre la croissance complexe des structures cosmiques avec Euclid
  • L’âge du carbone des sols corrigé pour estimer sa vraie dynamique

Commentaires récents

Aucun commentaire à afficher.

Archives

  • octobre 2025
  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter