• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

osuadmin

Les aimants : des pièges pour les requins bleus ?

22 octobre 2015 by osuadmin

Dans un souci de préservation des requins peau bleue, une espèce aujourd’hui presque menacée d’extinction, des chercheurs de l’Institut méditerranéen d’océanographie (MIO/OSU Institut Pythéas, CNRS / AMU / IRD / UTLN) et de l’Institut de recherche sur les phénomènes hors équilibre (IRPHE, AMU / CNRS / École Centrale Marseille) se sont intéressés à l’utilisation d’aimants pour limiter leur prise au cours de la pêche à la palangre. Hélas ! Il s’avère que ces aimants attirent les requins peau bleue plutôt qu’ils ne les repoussent.

Fortement exploité depuis plusieurs années par rapport à son abondance dans l’Atlantique Nord, le requin peau bleue (Prionace glauca) est une espèce presque menacée d’extinction (statut IUCN 2013). Il constitue en effet l’une des principales prises de la pêche à la palangre 1 que mènent les armateurs espagnols et portugais dans l’Atlantique Nord, même lorsqu’il n’est pas l’espèce ciblée par les pêcheurs qui préféreraient trouver sur leurs hameçons, pour des raisons de rentabilité, des espadons ou des thons.

Requin peau bleue capturé par la palangre de surface en Atlantique Nord-Est
Crédit : Sébastien Biton Porsmoguer

Les requins sont dotés d’un organe électro-sensoriel appelé ampoules de Lorenzini, constitué d’un système complexe de capteurs reliés à des récepteurs positionnés autour de leur museau et de leur tête et capables de détecter les ondes électromagnétiques. Du fait que tout être vivant émet un faible champ magnétique, les requins peuvent ainsi localiser leurs proies.

Des chercheurs ayant remarqué de manière fortuite en laboratoire que leur requin cherchait à fuir un aimant placé près de lui, des tests ont été réalisés avec différentes espèces de requins. Il s’avère que ce comportement vis-à-vis des aimants n’est pas le même pour toutes les espèces. Qu’en est-il pour le requin peau bleue ? Ce requin ne pouvant vivre en captivité, son comportement n’a jamais été testé. Se pourrait-il que les aimants fassent fuir ces requins et puissent ainsi être utilisés dans la pêche à la palangre pour en limiter la prise ?

Position de l’aimant sur l’hameçon
Crédit : Christophe Almarcha

C’est à cette question que des chercheurs du MIO et de l’IRPHE ont cherché à répondre en testant pendant 3 jours, dans des conditions réelles de pêche à la palangre, l’effet de deux modèles d’aimants en néodyme, à haute résistance dans le temps et à puissance magnétique élevée, mais de taille différente. Un hameçon sur deux a été équipé d’un aimant. La palangre a été divisée en trois zones qui ont été plongées dans l’eau successivement, de manière à pouvoir étudier trois durées d’immersion.

Ces tests ont permis de montrer que, quelle que soit la durée d’immersion des hameçons, les captures de requins peau bleue étaient plus élevées au niveau des hameçons munis d’aimants qu’au niveau des hameçons sans aimant, et d’autant plus élevées que l’aimant utilisé était plus grand et donc plus puissant. Ainsi, les aimants auraient un effet attractif sur les requins peau bleue et leur utilisation dans la pêche à la palangre ne pourrait que les piéger !

En outre, les mesures physiques réalisées durant cette étude ont révélé un aspect pratique important à prendre en compte : à leur sortie de l´usine de fabrication, les hameçons sont déjà légèrement aimantés et pourraient donc attirer le requin peau bleue, même en l’absence d’aimant !

1. La palangre de surface est une ligne-mère de 50-90 km de long sur laquelle sont fixées des lignes dotées à leur extrémité d´un hameçon et d´un appât, qui est plongée dans l’eau à une profondeur de 20 m environ.

Classé sous :Biodiversité, Biologie, Océan Balisé avec :Communiqué de presse

L’Arctique en pleine transformation

14 avril 2020 by osuadmin

Suite aux deux expéditions océanographiques menées en 2015 en Arctique dans le cadre du programme international GEOTRACES, des chercheurs de la Woods hole oceanographic institution (WHOI) et leurs collègues internationaux [1] ont mis en évidence que des quantités importantes de carbone et d’éléments traces en provenance des rivières et sédiments du plateau continental étaient apportées près du Pôle Nord par la dérive transpolaire, un important courant de surface. Associé au réchauffement climatique, cet apport de nutriments et contaminants pourrait modifier la productivité phytoplanctonique dans l’Arctique.

Les éléments traces, comme le fer, sont des nutriments essentiels à la vie océanique. Ils alimentent la croissance du phytoplancton, ces algues microscopiques qui constituent la base de la chaîne alimentaire marine. En général, plus de phytoplancton conduit à davantage de zooplancton (petits poissons et crustacés), qui peut ensuite être consommé par les prédateurs océaniques « supérieurs » comme les phoques et les baleines. Les contaminants, notamment le mercure, suivent le même chemin et des niveaux très élevés chez les animaux arctiques ont été retrouvés.

PNG - 1.6 Mo
Rencontre des brise-glaces FS Polarstern et USCGC Healy au Pôle Nord, le 7 septembre 2015.
Crédit : Stefan Hendricks, AWI

En 2015, les océanographes effectuant des recherches dans l’océan Arctique dans le cadre du programme international GEOTRACES ont trouvé des concentrations de carbone et d’éléments traces beaucoup plus élevées dans les eaux de surface situées près du Pôle Nord que dans celles situées de chaque côté de la dérive transpolaire, un important courant de surface capable de transporter, à travers l’océan Arctique en passant par le Pôle Nord, les eaux provenant du plateau continental sibérien.

Les nombreux éléments traces qui pénètrent dans l’océan mondial en provenance des rivières et des sédiments du plateau continental sont en général rapidement éliminés de la colonne d’eau. En revanche, les chercheurs ont mis en évidence que, dans l’océan Arctique, les éléments traces étaient liés à l’abondante quantité de matière organique issue des rivières, ce qui leur permettait d’être transportés par la dérive transpolaire jusqu’à l’Arctique central, à plus de 1 000 kilomètres de leurs sources.

Du fait du réchauffement climatique, les chercheurs s’attendent à ce que le dégel des sols conduise à une augmentation du ruissellement et donc de l’apport d’éléments traces auparavant piégés dans le pergélisol, ce qui pourrait entraîner une augmentation de la quantité de nutriments et contaminants atteignant le centre de l’océan Arctique. Or, à mesure que l’Arctique se réchauffe et que de grandes parties de l’océan se libèrent de la glace pendant de longues périodes, les algues marines deviennent plus productives. Un plus grand apport de nutriments pourrait donc alimenter encore davantage cette production d’algues.

Pour l’instant, si les chercheurs savent que la structure des écosystèmes marins est déterminée par la disponibilité des nutriments, ils ne peuvent dire exactement quels changements tout cela pourrait induire. Concernant le mercure, dont le cycle biogéochimique est étroitement lié à la photochimie et aux flux d’échanges importants à l’interface atmosphère – océan, de fortes modifications sont également attendues avec la disparition de la glace de mer en été.

Bien qu’une augmentation des nutriments puisse stimuler la productivité marine de l’Arctique, les chercheurs mettent en garde sur le fait que la perte continue de glace de mer aggrave le réchauffement climatique, ce qui aura un impact plus large sur les écosystèmes.

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Qui méthyle le mercure dans l’océan global ?

13 mars 2020 by osuadmin

Des chercheurs de l’Institut méditerranéen d’océanographie (MIO/PYTHÉAS, CNRS / Université de Toulon / IRD / AMU) viennent d’apporter un premier élément de réponse au paradoxe qui entourait la production de méthylmercure dans l’océan. À l’aide des jeux de données métagénomiques et métatranscriptomiques issus de l’expédition TARA OCEANS, ils ont mis en évidence le rôle majeur joué dans tous les océans du monde par la bactérie microaérophile Nitrospina dans la méthylation du mercure. Comprendre comment se forme et se transfère le méthylmercure dans l’océan est important car ce composé est la forme la plus toxique du mercure pour l’homme et les écosystèmes.

Préserver les humains des expositions au mercure est le principal objectif de la Convention de Minamata des Nations Unies ratifiée en août 2017. Or, si cette convention pointe vers la nécessité de réduire les émissions anthropiques de mercure inorganique, elle ne prend pas en compte la forme organique du mercure, le méthylmercure, qui est sa forme la plus toxique et surtout la seule capable de s’amplifier le long de la chaîne trophique et ainsi de mettre en péril les écosystèmes marins et la santé humaine. La consommation de poissons marins est en effet la principale voie d’exposition de l’homme au mercure. Le méthylmercure est produit dans l’océan par des microorganismes à partir de mercure inorganique [1]. Cette méthylation du mercure inorganique marin a été confirmée dans tous les bassins océaniques, quels que soient les niveaux d’oxygénation de leurs eaux. Pourtant, jusqu’en 2016, seuls les microorganismes anaérobies [2] étaient connus pour produire du méthylmercure. C’était le paradoxe de l’origine du méthylmercure. En 2016, il a été démontré que la bactérie microaérophile2 Nitrospina détectée dans la banquise antarctique possédait les gènes de la méthylation du mercure. Il a également été suggéré qu’elle pourrait aussi être responsable de la production de méthylmercure dans d’autres environnements oxiques (pourvus en oxygène) sans néanmoins que cela ait pu être confirmé par les métagénomes océaniques disponibles. La question de savoir « qui méthyle le mercure dans l’océan global » n’était donc toujours pas résolue. Résoudre cette énigme est pourtant d’une importance capitale pour mieux comprendre les liens entre les émissions anthropiques de mercure et le transfert du méthylmercure le long des chaînes trophiques.De jeunes chercheurs du MIO ont combiné leurs expertises en bioinformatique, microbiologie et biogéochimie marine afin d’appréhender ce problème. Sur la base de jeux exhaustifs de données métagénomiques3 et métatranscriptomiques [3] issus du projet TARA OCEANS (www.oceans.taraexpeditions.org), ils ont pu identifier, dans tous les bassins océaniques couverts par l’expédition, des gènes de méthylation du mercure. Ces gènes sont non seulement présents, mais aussi transcrits [4], ce qui démontre le rôle actif des microorganismes identifiés dans la méthylation du mercure.

Les résultats obtenus ont permis d’identifié la bactérie microaérophile nitrite-oxidante Nitrospina comme la productrice prédominante et omniprésente de méthylmercure dans les eaux oxiques de subsurface de l’océan global. En revanche, les bactéries sulfato-réductrices, déjà bien connues et considérées comme les principales productrices de méthylmercure dans d’autres écosystèmes comme les sédiments, représenteraient une fraction mineure des bactéries porteuses du gène de méthylation du mercure dans l’océan.

PNG - 284.4 ko

Les cercles colorés indiquent les stations TARA OCEANS dans lesquelles le gène responsable de la méthylation du mercure (hgcA) a été identifié, les hexagones colorés celles dans lesquelles le gène est non seulement présent mais aussi actif (54 % des cas) et les croix celles dans lesquelles le gène n’a pas été détecté. La couleur rouge des symboles indique l’affiliation du gène à la bactérie microaérobie Nitrospina prédominante et omniprésente dans les eaux oxiques de subsurface de l’océan global (les autres couleurs correspondant à d’autres bactéries).

Crédit : INSU

Tout en résolvant le paradoxe apparent de l’origine du méthylmercure marin, ces travaux conduisent à une profonde reconsidération du rôle de Nitrospina dans la production de méthylmercure, rôle qui s’avère majeur non seulement dans la banquise antarctique mais aussi dans les océans Pacifique, Atlantique, Indien et Austral. Ce faisant, ils apportent une contribution importante à la compréhension du cycle global du mercure qui permettra de mieux estimer les effets du changement climatique sur la production marine de méthylmercure.

 

Voir en ligne : Le communiqué sur le site de l’INSU

Classé sous :Atmosphère Balisé avec :Communiqué de presse

Mission Rosetta : deux sources distinctes d’oxygène moléculaire révélées dans la coma de 67P/Churyumov-Gerasimenko

10 mars 2022 by osuadmin

Une équipe de recherche internationale, dans laquelle figurent des scientifiques d’Aix-Marseille Université, du CNRS, de Sorbonne Université et de l’ENSC de Rennes a montré, via l’analyse des données de la mission Rosetta concernant le coma de la comète 67P/Churyumov-Gerasimenko, que le dégazage de l’oxygène moléculaire (O2) pouvait être corrélé avec ceux du dioxyde de carbone (CO2) et du monoxyde de carbone (CO), contredisant l’opinion dominante selon laquelle la libération d’O2 est toujours liée à l’eau (H2O). Cette étude fait l’objet d’une publication sortie le jeudi 10 mars 2022 dans la revue Nature Astronomy.

Voir en ligne : Le communiqué sur le site du CNRS

Classé sous :Univers Balisé avec :Brève

La nature ordinaire agricole pourrait rendre de nombreux services

14 mars 2022 by osuadmin

A travers le monde, si de nombreux travaux de recherche ont eu pour objectifs de caractériser et de mesurer les services écosystémiques [1] des espaces abritant une biodiversité qualifiée « d’extraordinaire » de par sa richesse et/ou la présence d’espèces rares, beaucoup moins d’études se sont intéressées aux services écosystémiques rendus par les espaces abritant une nature qualifiée « d’ordinaire ». Celle-ci est la nature composée d’espèces et d’habitats communs possédant une faible complexité écologique. Elle comprend notamment une très grande partie des espaces agricoles cultivés de manière conventionnelle. Cette nature ordinaire agricole est aussi très menacée par les changements environnementaux comme l’extension des surfaces urbanisées. Bien qu’ordinaire, cette nature pourrait cependant rendre de nombreux services écosystémiques tels que la fixation du carbone atmosphérique, la filtration des eaux, la lutte contre l’érosion des sols, etc . Face à l’imperméabilisation croissante des terres agricoles, ces services devraient alors être mesurés et compensés au-delà de la perte de production. C’est ce que révèlent des travaux parus dans la revue Agronomy for Sustainable Development.

Deux écologues de l’Institut méditerranéen de biodiversité et d’écologie marine et continentale (IMBE) ont cherché à savoir quels services écosystémiques avaient déjà été identifiés dans des agroécosystèmes aussi communs que des champs cultivés intensivement ou des prairies artificielles.

En 2019, une étude de la bibliographie scientifique internationale suivie d’une analyse qualitative et quantitative des données extraites des articles sélectionnés a permis de sélectionner un total de 616 publications dont 189 ont été retenues après lecture de l’intégralité des textes (Vidaller & Dutoit, 2021). Les résultats ont montré que ce sont les services de régulation qui sont les plus étudiés (85,7 %) dans les agroécosystèmes conventionnels, suivis des services de support (58,7 %), d’approvisionnement (55,6 %) et enfin les services culturels qui reçoivent alors logiquement le moins d’attention (24,9 %) car ces espaces sont composés de prairies artificielles, de cultures arables, vignes et vergers intensifs, etc.

JPEG - 240.4 ko
Une prairie artificielle fauchée dans le sud de la France, un exemple de nature ordinaire agricole
Crédit : Christel Vidaller /IMBE/CNRS

Les articles consultés sont principalement concentrés sur les services qui pourraient soutenir et/ou fournir un avantage aux agriculteurs comme par exemple les services de pollinisation (36.5%), la lutte antiparasitaire (48.1%) et le cycle des nutriments (49.7%). La séquestration du carbone (46,6 %) a aussi souvent été mesurée, témoignant de la récente inquiétude suscitée par l’augmentation des niveaux de CO2 atmosphérique. La fourniture de biodiversité (40,7%) a aussi été évaluée même pour des systèmes agricoles conventionnels pourtant réputés pauvres en habitats et biodiversité.

Pour terminer, les principaux bénéficiaires des services écosystémiques identifiés dans les articles analysés étaient les agriculteurs eux-mêmes (95,2 %) via notamment les services de la formation du sol, de la production primaire et du cycle des éléments nutritifs. Comme les agroécosystèmes sont exploités pour améliorer l’offre de services, il est donc normal que les agriculteurs soient les principaux bénéficiaires des services écosystémiques produits.

Après cette première synthèse ayant permis d’identifier et de caractériser les services écosystémiques rendus par la nature ordinaire agricole, le prochain défi sera de mesurer quantitativement ces services écosystémiques et de bien évaluer les compromis et synergies entre ces services et les éventuels « disservices », qui sont les fonctions négatives pour le bien-être humain. Dans les agroécosystèmes intensifs, il peut s’agir de l’érosion, de la perte d’habitat de la faune, des émissions de gaz à effet de serre ou encore le la contamination des humains et d’autres espèces par les pesticides.

Ces études, réalisées dans le cadre d’un projet financé par l’Agence Nationale de la Recherche, devraient alors permettre de mieux prendre en compte la nature ordinaire dans les mécanismes de conservation/restauration et de les inclure notamment dans la séquence Eviter-Réduire-Compenser des études d’impact. En effet, à la compensation de la perte de production agricole, devrait s’additionner une compensation écologique des services perdus. Il pourrait ainsi être proposé de compenser la destruction des espaces de nature ordinaire agricole via le financement des agriculteurs pour qu’ils mettent en place des pratiques agro-écologiques telles que des techniques culturales simplifiées ou des cultures sous couverts. Il a en effet déjà été démontré que les systèmes d’agriculture moins intensifs (traditionnels, raisonnés, biologiques, etc.) fournissent plus de services écosystémiques que les pratiques agricoles conventionnelles. Ce type de mesure pourrait alors être un élément réellement incitatif pour accélérer la nécessaire transition écologique de l’agriculture française.

Classé sous :Écologie Balisé avec :Communiqué de presse, Résultat scientifique

Grâce à Rosetta, la comète 67P/Churyumov–Gerasimenko continue de livrer ses secrets

13 octobre 2015 by osuadmin

Plusieurs équipes de chercheurs français du LATMOS 1, LPC2E 2, CRPG 3, LAM 4, IRAP 5 impliqués dans l’analyse des observations effectuées par les instruments embarqués à bord de la sonde Rosetta (ESA) nous révèlent l’absence de lien pour certains éléments chimiques entre notre Terre et les atmosphères cométaires. Dans le même temps, des chercheurs de l’Observatoire de la Côte d’Azur ont montré que l’activité précoce de la comète est dûe aux fortes variations de temperature engendrées par les processus d’ombrage de la surface topographique. Ces travaux sont parus dans les revues Science et The Astrophysical Journal Letters, 810 :L22

Froids et inactifs loin du soleil, les noyaux cométaires glacés se vaporisent à l’approche du système solaire interne, libérant sous l’effet des radiations solaires un flux de gaz et de poussières. La chevelure et la queue de la comète ainsi formées, la coma, les différencient alors des autres petits corps inactifs du système solaire : les astéroïdes.

  • L’eau, le carbone, l’azote terrestre ne seraient pas d’origine cométaire

L’instrument ROSINA développé par une équipe internationale sous la coordination de Kathrin Altwegg (Université de Berne, Suisse) et embarqué à bord de la sonde ROSETTA, analyse ainsi la composition des gaz de la comète 67P/Churyumov-Gerasimenko par spectrométrie de masse. Cet instrument permet l’analyse élémentaire et isotopique de ces gaz.

Les résultats montrent que la glace cométaire est riche en deutérium, avec un rapport Deutérium/Hydrogène trois fois supérieur à la valeur des océans terrestres, ce qui interdit une filiation directe entre ce type de comète et l’eau terrestre 6.

Par ailleurs, pour la première fois un gaz rare, l’argon a été détecté dans une coma cométaire, et ce, en grande quantité 7. Les gaz rares sont importants en tant que traceurs de l’origine et de l’évolution des atmosphères des planètes internes (Vénus la Terre et Mars). Cette mesure d’argon confirme pleinement que les élements majeurs qui forment l’atmosphère terrestre et les océans (l’eau, le carbone, et l’azote) ne peuvent provenir de comètes de type 67P, et auraient été apportés par des astéroïdes riches en volatils. Par contre, elles suggèrent qu’une fraction importante des gaz rares sont d’origine cométaire (Marty et al., soumis).

Cet instrument a également mesuré en continu la composition de la coma (H2O, CO2, CO, N2…) 8 et a montré son hétérogénéité chimique. Ces mesures permettent de mieux connaître les conditions de formation de la glace cométaire, dont sa température (autour de 30-40 K) 9.

  • L’activité de la comète trahie par son ombre…
Comparaison entre la carte de variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014 et une image de 67P prise le 2 septembre 2014
Crédit : ESA/Rosetta/Navcam/Bob King

Voir la modélisation :

https://osupytheas.fr/ressources/wp-content/uploads/sites/2/2015/10/Variation-temperature-67P-1.mp4

Variation de température (∆T/∆t)max à la surface de 67P durant la période de août-décembre 2014

L’imageur NAVCAM a révélé de façon inattendue que l’activité précoce de 67P, matérialisée par des jets de gaz et de poussières et encore mal comprise, se produisait principalement dans la zone concave du cou, entre les 2 lobes principaux (cf. Fig). Or, cette région est la moins exposée au Soleil et devrait être en moyenne plus froide, et donc moins propice à la sublimation de la glace que les autres régions de la comète.

Pour comprendre ce paradoxe les chercheurs de l’Observatoire de la Côte d’Azur 10 ont utilisé un modèle thermophysique prenant en compte la conductivité thermique et la topographie complexe de la comète pour calculer une carte de température de sa surface au cours de ses rotations. Ce modèle leur a permis de mettre en évidence que la région du cou présentait entre août et Décembre 2014 les variations de température les plus rapides en réponse au processus d’ombrage par les terrains environnants. Une nouvelle relation de cause à effet est donc mise au jour entre ces variations thermiques de surface et l’activité précoce de la comète.

Il a déjà été observé que des variations rapides de température peuvent induire de la fracturation à la surface des petits corps du système solaire (Delbo et al. 2014). Les auteurs proposent dans cet article que le taux d’érosion de la surface de la comète, lié à cette fracturation thermique, soit plus élevé dans le cou qu’ailleurs. Cette fracturation du matériau de surface permet la pénétration des radiations solaires plus en profondeur. Ceci expliquerait pourquoi la région du cou révèle à l’analyse plus de glace que les autres régions et pourquoi elle est la principale source de gaz de la comète (cf. Fig). Plus généralement, ces résultats suggèrent que la fracturation par effet thermique (formation du régolite) doit être beaucoup plus rapide à la surface des corps sans atmosphère présentant des concavités importantes (formation d’ombre) que ne le prévoit les estimations actuellement disponibles.

1. LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune, F-94100 Saint-Maur, France.
2. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS – Université d’Orléans, France.
3. Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France.
4. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France.
5. Université de Toulouse–UPS-OMP–IRAP, Toulouse, France. 6CNRS–IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France.
6. Altwegg, K et al. 2015. 67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio. Science 347 : 1261952–1.
7. Balsiger, H. et al. 2015. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko Science Advances 2015, 1500377 (online)
8. Hässig, M. et al. 2015. Time Variability and Heterogeneity in the Coma of 67P/Churyumov-Gerasimenko. Science 347 : aaa0276–1.
9. Rubin, M. et al. 2015. Molecular Nitrogen in Comet 67P/Churyumov-Gerasimenko Indicates a Low Formation Temperature. Science : 1–4. aaa6100.
10. Alí-Lagoa V., Delbo M., Libourel G. (2015) Rapid temperature changes and the early activity on comet 67P/CHURYUMOV-GERASIMENKO. The Astrophysical Journal Letters, 810 :L22

Classé sous :Atmosphère, Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Pages provisoires omises …
  • Page 52
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter