• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

osuadmin

Du nouveau sur la formation et l’évolution des plaines côtières, l’exemple du Sud-Ouest de l’Inde

11 avril 2016 by osuadmin

Une étude des plaines côtières du sud-ouest de l’Inde menée par une équipe internationale 1 de chercheurs a permis d’apporter une réponse à une question scientifique de longue date sur la formation et l’histoire de ces plaines principalement couvertes de latérites. Cette étude, basée sur la méthode de datation par l’argon, a en effet permis de déterminer que les latérites de ces plaines se sont formées il y a au moins 47 millions d’années au pied d’un vieux relief érigé il y a environ 60 millions d’années. Les résultats de cette recherche et leurs implications sont présentés dans l’édition du journal Geology du mois d’Avril 2016.

Les plaines côtières ou marges continentales qui résultent de la séparation des continents sont marquées par de grands escarpements dont l’âge et l’évolution géomorphologique sont matières à débat dans la communauté des géosciences. Des études ont montré une érosion rapide des marges après la séparation des continents impliquant l’installation précoce des escarpements tandis que d’autres ont argumenté pour une évolution plus lente au cours de phases d’érosion successives et par conséquent une stabilisation plus tardive de ces reliefs.

Paysage de collines
Paysage de collines exposant les sols latéritiques (latérites) de la plaine côtière (au pied de l’Escarpement des Western Ghats sur la marge sud-ouest de l’Inde péninsulaire – Formation de minerais d’oxydes de manganèse dans les sols latéritiques de la plaine côtière – Oxydes de manganèse vus en microscopie optique à lumière réfléchie – Image de micro-fluorescence X montrant les oxydes de manganèse potassiques (cryptomélane) en vert parmi les autres oxydes de manganèse en bleu et les oxydes de fer en rouge.
Crédit : A. Beauvais et al. Geology 2016

Or, le mode et le rythme de l’érosion des marges continentales sont déterminants pour reconstituer leur évolution topographique, reconstruire le développement des réseaux de drainage, et quantifier les transferts sédimentaires depuis les continents vers les bassins océaniques marginaux au cours des temps géologiques.

Aujourd’hui, une équipe de chercheurs internationale vient d’apporter un nouvel éclairage sur l’évolution des marges continentales. Ils ont en effet pu préciser l’histoire géomorphologique de la marge continentale sud-ouest de l’Inde Péninsulaire 2 depuis la mise en place il y a environ 65 millions d’années des roches basaltiques des trapps de la province du Deccan.

Pour cela, ils ont déterminé et interprété les âges obtenus par la méthode de datation à l’argon (40Ar/39Ar) sur des oxydes de manganèse potassiques (appelés cryptomélane) formés dans les sols latéritiques (latérites) de part et d’autre du grand escarpement des Western Ghats qui borde la marge sud-ouest de l’Inde Péninsulaire. Ils ont ainsi montré que la préservation de ces sols épais de plusieurs dizaines de mètres et vieux d’au moins 47 millions d’années ont pu se former en un minimum de 12 millions d’années au pied de l’escarpement ce qui atteste de l’installation rapide (à l’échelle des temps géologiques) et de la stabilisation précoce de ce relief, il y a probablement 60 millions d’années. De plus, les résultats de ces recherches impliquent des vitesses d‘érosion des sols latéritiques datés très faibles (< 5 mètres par million d’années) depuis leur formation au pied de l’escarpement.

Ces nouveaux résultats questionnent les modèles d’érosion dérivés de l’étude de l’histoire thermique (refroidissement) des roches contenant des minéraux de phosphate de calcium (apatites). Plus généralement, les âges obtenus sur les oxydes de manganèse des sols latéritiques remettent en question l’idée selon laquelle la topographie des marges et des surfaces continentales serait due à des soulèvements et des rajeunissements récents.

Ces travaux publiés dans le journal Geology montrent que l’étude géomorphologique et géochronologique des sols latéritiques formés et préservés depuis des millions d’années sur les marges et les continents des régions intertropicales est prometteuse pour quantifier les vitesses d’érosion et les sédiments exportés vers les bassins marins à l’échelle des temps géologiques

1. L’équipe est composée de chercheurs du Centre Européen de Recherches et d’Enseignements des Géosciences de l’Environnement (CEREGE-OSU Institut Pythéas / CNRS, IRD, Aix-Marseille Université), de Géosciences Environnement Toulouse (GET - IRD, Université Toulouse Paul Sabatier, CNRS ), de Géosciences Montpellier (Université de Montpellier 2, CNRS) et du Centre for Earth and Space Sciences (University of Hyderabad)
2. On trouve des surfaces présentant les mêmes caractéristiques dans les plaines côtières et même à l’intérieur des terres en Inde, en Afrique, en Australie, et en Amérique du Sud.

Classé sous :Environnement, Surface continentale, Terre Balisé avec :Communiqué de presse

Où sont passés les anchois et les sardines ?

15 mars 2016 by osuadmin

En dix ans en Méditerranée, la biomasse des sardines a été divisée par trois, passant de plus de 200 000 tonnes à moins de 67 000 tonnes. On retrouve ces mêmes proportions chez les anchois. Mais où ces petits poissons – également appelés « petits pélagiques » – sont-ils donc passés ? Pour comprendre le phénomène qui a des impacts économiques importants, les scientifiques se sont associés aux pêcheurs. Chaque mois, les pêcheurs ont prélevé des anchois et sardines selon un protocole scientifique bien précis (lieu, date, heure, méthode de pêche). Le projet EcoPelGol a décrypté pendant trois ans les fluctuations des stocks de petits pélagiques dans le golfe du Lion. La faute n’incombe ni aux prédateurs, ni aux virus mais bien à l’environnement. Face à la baisse de qualité du plancton, les poissons utilisent plus leur énergie pour se reproduire que pour grandir… Financé par France Filière Pêche, EcoPelGol été réalisé par l’unité mixte de recherche MARBEC (IRD / Ifremer / CNRS / Université de Montpellier) 1 en partenariat avec l’Université de Gérone (Espagne) et l’Institut Méditerranéen d’Océanologie – MIO (Aix Marseille Université/Université de Toulon / CNRS / IRD).

Chalutage et tri de petits poissons pendant la campagne PELMED – Gros plan de sardines
Crédit : Isabelle Cheret / Ifremer – Olivier Barbaroux / Ifremer
1. L’Unité Mixte de Recherche (UMR) MARBEC, MARine Biodiversity, Exploitation and Conservation, est l’un des plus importants laboratoires travaillant sur la biodiversité marine et ses usages en France avec environ 230 agents, dont 80 chercheurs et enseignants-chercheurs. MARBEC est implantée à Sète, Montpellier et Palavas-les-Flots, ainsi que dans l’océan Indien, en Asie, en Afrique et en Amérique du Sud. Elle étudie la biodiversité marine des écosystèmes lagunaires, côtiers et hauturiers, principalement méditerranéens et tropicaux.

Classé sous :Biodiversité, Environnement, Océan Balisé avec :Communiqué de presse

MOSAIC, le spectrographe multi-objets (MOS) de l’European Extremely Large Telescope (E-ELT)

18 mars 2016 by osuadmin

Le contrat pour l’étude de la phase-A a été signé par l’Observatoire Européen Austral et le consortium MOSAIC. Le MOS sera un des instruments de première génération qui équipera le télescope E-ELT de 39 mètres. Combiné à la sensibilité sans précédent de l’E-ELT, MOSAIC sera l’instrument le plus performant au monde pour l’étude du halo de la Voie lactée et de ses satellites, pour l’analyse détaillée des populations stellaires dans les galaxies proches, et jusqu’aux observations des premières structures de l’Univers dans sa période de ré-ionisation

Le contrat a été signé par l’ESO, et par le CNRS/INSU, institut responsable du consortium le 18 mars 2016, durant la réunion de démarrage à l’Observatoire de Paris, en présence de l’équipe 1 conduite par François Hammer. Le consortium comprend cinq pays moteurs (France, Royaume-Uni, Pays-Bas, Brésil et Allemagne) et six partenaires associés (Finlande, Suède, Espagne, Italie, Autriche et Portugal).

L’instrument, alliant de grandes possibilités multiplexes et une haute résolution spatiale, résoudra de nombreuses questions d’astronomie et de cosmologie. Il étudiera quand et comment les premières galaxies se sont formées, et comment elles ont fusionné pour former de grandes galaxies, telles que la Voie lactée. Il étudiera également la distribution et l’évolution de la matière lumineuse et de la matière noire à toutes les échelles spatiales. Il apportera de nouvelles informations sur la physique des galaxies au-delà du Groupe local, ainsi que sur le centre galactique, la formation et l’évolution des planètes extrasolaires.

Figure 1
Vue de l’instrument MOSAIC (en haut à droite) tel qu’il serait implémenté dans le futur télescope E-ELT. Le fond représente les nombreuses galaxies faibles que l’instrument pourra observer par centaines à la fois.
Crédit : NASA (fond de galaxies), ESO (dessin du télescope) & Consortium MOSAIC (dessin de l’instrument).
1. L’équipe comprend Pascal Jagourel (Observatoire de Paris), Chris Evans (UK-ATC, Edinburgh), Mathieu Puech (Observatoire de Paris), Gavin Dalton (STFC-RALSPACE & Oxford Univ.), Myriam Rodrigues (Observatoire de Paris), Ewan Fitzsimons (STFC-UK-ATC, Edinburgh), Simon Morris (Durham Univ.), Beatriz Barbuy (IAG, Sao Paulo), Jean-Gabriel Cuby (LAM, Marseille), Lex Kaper (Amsterdam Univ.), Martin Roth (AIP, Potsdam), Gerard Rousset (Observatoire de Paris), Richard Myers (Durham Univ.), Olivier Le Fèvre (LAM, Marseille), Alexis Finogenov (Helsinki Univ.), Bruno Castilho (LNA, Itajuba), Goran Ostlin (Stockholm Univ.), Jesus Gallego (Madrid, Computense Univ.), Fabrizio Fiore (INAF-Osservatorio Astronomico di Roma), Bodo Ziegler (Vienna Univ.), Jose Afonso (IA, Lisbon Univ.), Marc Dubbledam (Durham Univ.), Phil Parr Burman (STFC-UK-ATC), Tim Morris (Durham Univ.), Tristan Buey (Observatoire de Paris), Fanny Chemla (Observatoire de Paris), Eric Gendron (Observatoire de Paris), Andreas Kelz (AIP, Potsdam), Isabelle Guinouard (Observatoire de Paris), Ian Lewis (Oxford Univ.), Kevin Middleton (STFC-RALSPACE, Oxford), Ramon Navarro (NOVA), Marie Larrieu (IRAP, Toulouse), Thierry Contini (IRAP, Toulouse), Kjetil Dohlen (LAM, Marseille), Niklas Harald (Goettingen Univ.), David Le Mignant (LAM, Marseille), Yanbin Yang (Observatoire de Paris).

Classé sous :Univers Balisé avec :Communiqué de presse

Marseille à l’heure des sciences écologiques

8 mars 2016 by osuadmin

Le congrès international sfécologie 2016 se tiendra au Palais du Pharo de Marseille du 24 au 28 octobre 2016. Cet événement qui réunira chercheurs et acteurs de l’écologie scientifique du monde entier permettra de faire un point sur les dernières avancées de la recherche en sciences écologiques et de discuter autour des grands enjeux actuels de l’environnement.

Biodiversité, changements globaux, invasions biologiques, communication chimique, évolution et diversification sont autant de thèmes méritant une diffusion large, afin de mieux comprendre le fonctionnement des écosystèmes terrestres et marins à toutes les échelles spatiales et temporelles. Les travaux scientifiques présentés lors du congrès sont cruciaux pour comprendre les services qu’offrent les milieux naturels à nos sociétés et pour entreprendre une gestion durable des effets de l’industrie, de l’agriculture ou de l’urbanisation.

Les organisateurs

  • La Société Française d’Écologie (Sfé), fondée en 1968, est une association reconnue d’utilité publique et membre de l’European Ecological Federation (EEF) et de l’International Association for Ecology (INTECOL). Elle a pour objectif de faire rayonner les sciences de l’écologie en France en promouvant le développement, l’intégration et le partage des connaissances scientifiques de l’écologie sous tous ses aspects.
  • L’Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE) rassemble plus de 250 chercheurs spécialistes de l’environnement, qui analysent la biodiversité et le fonctionnement des écosystèmes terrestres et marins. En développant des approches de biologie fondamentale, de modélisation ou de recherche appliquée, l’institut apporte une compétence forte dans les domaines des relations homme-milieu, de la conservation de la biodiversité et de la restauration écologique.

 

Classé sous :Écologie, Environnement Balisé avec :Communiqué de presse

Rosetta : l’âge des comètes dévoilé grâce à l’identification de leur type de glace

9 mars 2016 by osuadmin

Les glaces enfouies à l’intérieur de la comète 67P/Churyumov-Gerasimenko se trouvent essentiellement sous forme cristalline, ce qui implique qu’elles seraient issues de la nébuleuse primitive, et donc du même âge que notre système solaire. Cette découverte a été obtenue par une équipe internationale pilotée par un chercheur du LAM 1 (CNRS/Aix Marseille Université) et comprenant également des chercheurs du laboratoire J.-L. Lagrange (OCA/CNRS/Université Nice Sophia Antipolis) et du Centre de recherches pétrographiques et géochimiques (CNRS/ Université de Lorraine), avec le soutien du CNES. Leurs résultats proviennent de l’analyse de données fournies par l’instrument Rosina 2, placé à bord de la sonde Rosetta de l’Agence spatiale européenne. Ces travaux ont été publiés le 8 mars 2016 dans The Astrophysical Journal Letters.

La mission Rosetta nous dévoile peu à peu les secrets des comètes et a permis de trancher une question vieille de plusieurs décennies : la nature de leurs glaces. Deux grandes hypothèses s’affrontaient jusqu’ici : celle d’une glace cristalline, où les molécules d’eau sont arrangées de manière périodique, et celles d’une glace amorphe, où les molécules d’eau sont désordonnées. Un problème rendu d’autant plus sensible par ses implications sur l’origine et la formation des comètes et du système solaire.

C’est l’instrument Rosina de la sonde Rosetta qui aura permis de répondre à cette question. Ce spectromètre de masse a d’abord mesuré, en octobre 2014, les abondances du diazote (N2), du monoxyde de carbone (CO) et de l’argon (Ar) dans la glace de Tchouri. Ces données ont été comparées à celles obtenues en laboratoire dans des expériences sur de la glace amorphe, ainsi qu’à celles de modèles décrivant la composition d’hydrates de gaz, un type de glace cristalline où les molécules d’eau peuvent emprisonner des molécules de gaz. Les proportions de diazote et d’argon retrouvées sur Tchouri correspondent bien à celles du modèle des hydrates de gaz alors que la quantité d’argon déterminée sur « Tchouri » est cent fois inférieure à celle que la glace amorphe peut piéger. La glace de la comète possède donc bien une glace de structure cristalline.

Cette découverte est capitale car elle permet de dater la naissance des comètes. En effet, les hydrates de gaz sont des glaces cristallines qui se sont formées dans la nébuleuse primitive du système solaire, à partir de la cristallisation de grains de glace d’eau et de l’adsorption de molécules de gaz sur leurs surfaces au cours du lent refroidissement de la nébuleuse. Si les comètes sont composées de glace cristalline, cela signifie qu’elles se sont forcément formées en même temps que le système solaire, et non auparavant dans le milieu interstellaire. La structure cristalline des comètes prouve également que la nébuleuse primitive était suffisamment chaude et dense pour sublimer la glace amorphe qui provenait du milieu interstellaire. Les hydrates de gaz agglomérés par Tchouri ont dû se former entre -228 et -223 °C pour reproduire les abondances observées. Ces travaux confortent également les scénarios de formation des planètes géantes, ainsi que de leurs lunes, qui nécessitent l’agglomération de glaces cristallines.

Rapports N2/CO and Ar/CO mesurés par Rosina
Le noyau de la comète « Tchouri » vue par la sonde Rosetta
Crédit : ESA
1. Laboratoire au sein de l’Institut Pythéas
2. Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Les queues spectaculaires du gaz ionisé arraché à NGC 4569, la galaxie spirale la plus massive de l’amas de la Vierge

19 janvier 2016 by osuadmin

Les galaxies ne se répartissent pas aléatoirement dans l’univers. Certaines d’entre elles se retrouvent dans des amas qui peuvent en contenir des centaines. Les astrophysiciens savent depuis longtemps que l’évolution des galaxies dans ces amas doit être affectée par cet environnement particulier. En effet, on y trouve en proportion beaucoup moins de galaxies spirales (présentant un disque dans lequel de nouvelles étoiles se forment à partir du gaz du milieu interstellaire) que de galaxies elliptiques ou lenticulaires (contenant très peu de gaz). Les quelques galaxies spirales que l’on trouve dans les amas contiennent en général moins de gaz et de jeunes générations d’étoiles que les galaxies plus isolées.

Plusieurs mécanismes ont été proposés pour expliquer ces différences. Premièrement, lorsque deux galaxies se croisent, des forces de marée (les parties plus éloignées de chaque galaxie subissent une force de gravité moins importante que les parties les plus proches, ce qui tend à « déchirer » la galaxie). Le deuxième mécanisme est la « pression dynamique » que subit le milieu interstellaire d’une galaxie qui traverse le gaz chaud et diffus que renferment les amas (cette force est similaire à celle que ressent par exemple un motard lancé à vive allure). Ces deux processus sont capables d’arracher le gaz des galaxies d’amas, et ainsi réduire la formation de nouvelles étoiles. Dans les galaxies spirales les plus massives, les théories les plus en vogue prévoient aussi un troisième mécanisme : l’énergie injectée dans le milieu interstellaire par le noyau actif qu’elles contiennent en leur centre peut aussi amener le gaz à s’échapper des galaxies.

L’identification du processus dominant est critique pour la mise au point des modèles et des simulations cosmologiques qui ont aujourd’hui une précision suffisante pour être comparable aux observations. Il est cependant très difficile d’observer le gaz alors qu’il est en train de quitter les galaxies en particulier en raison de sa faible densité. La mise à disposition d’un nouveau filtre très efficace pour détecter l’émission du gaz ionisé dans une raie de l’atome d’hydrogène (Halpha), sur la camera extrêmement sensible MegaCam du CFHT (Canada France Hawaï Telescope) offre aux astronomes un nouvel outil très performant pour la détection du gaz arraché aux galaxies par la pression dynamique.

Une équipe internationale dirigée par des chercheurs du Laboratoire d’Astrophysique de Marseille (LAM – CNRS/Aix-Marseille Université) a utilisé cet instrument pour observer NGC 4569, la galaxie spirale la plus massive de l’amas de la Vierge, qu’elle est en train de traverser à plus de 1200 km/s. Cet amas est encore en formation et nous offre donc l’opportunité de voir la transformation des galaxies dans les amas « en direct ». L’image Halpha obtenue au CFHT montre pour la première fois que des queues spectaculaires de gaz ionisé s’étendent sur plus de 300 000 années-lumière, ce qui les rend environ 5 fois plus grandes que la galaxie elle-même. Cette observation confirme que la pression dynamique est en train de vider la galaxie de son milieu interstellaire. Une estimation de la masse de gaz dans ces queues démontre que le phénomène est si violent que 95 % du milieu interstellaire a déjà été arraché, réduisant donc fortement la capacité de la galaxie à former de nouvelles étoiles.

Pour une galaxie aussi massive que NGC4569, on aurait pu penser que les forces gravitationnelles seraient suffisamment fortes pour retenir le gaz subissant la pression dynamique. Dans les modèles cosmologiques, les chercheurs supposent en effet que c’est plutôt l’effet du noyau actif de la galaxie qui est responsable de la réduction de l’activité de formation stellaire des galaxies de cette masse. Les nouvelles observations démontrent au contraire que l’effet dominant est bien la pression dynamique. Une contrainte dont il faudra tenir compte dans les modèles cosmologiques intégrant l’effet de l’environnement des galaxies.

Ce résultat démontre aussi que le nouveau dispositif au CFHT est très efficace pour identifier les objets en train d’interagir par effet de pression dynamique avec le gaz chaud et diffus des amas. Cela nous ouvre une nouvelle voie très prometteuse pour la compréhension du rôle que l’environnement joue dans l’évolution des galaxies.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Pages provisoires omises …
  • Page 55
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Joanna Charton récompensée par le Prix de thèse AMU 2024 – Campagne 2025
  • Deux chercheurs du CEREGE participent à une étude internationale sur le rôle clé des plantons calcifiants dans le climat
  • Concours « Laisse ton empreinte »
  • Suivre la croissance complexe des structures cosmiques avec Euclid
  • L’âge du carbone des sols corrigé pour estimer sa vraie dynamique

Commentaires récents

Aucun commentaire à afficher.

Archives

  • octobre 2025
  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter