• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

osuadmin

Une nouvelle carte de l’eau sur Mars

22 août 2022 by osuadmin

Des travaux réalisés pour partie au sein de l’équipe « Systèmes planétaires » du LAM (OSU Institut Pythéas / CNRS – AMU – CNES) et de l’Institut Origines ont permis de fournir la première carte globale et à haute résolution des minéraux dits « hydratés » de la surface de Mars. Ces minéraux ont la particularité de s’être formés par interaction chimique entre la roche Martienne et de l’eau liquide, et ils contiennent bien souvent de l’eau piégée dans leur structure. Ce sont ainsi d’excellent traceurs des anciens environnements aqueux de Mars et des cibles exobiologiques de première importance.

Cette cartographie globale qui a pris plus de 10 ans à construire, met en évidence plusieurs centaines de milliers de sites d’altération aqueuse sur Mars, contre environ un millier connu auparavant. Surtout, elle révèle que la surface la plus ancienne de Mars (datant de plus de 3.7 Ga) est altérée par l’eau presque partout, modifiant notre vision de Mars ancienne. De nombreux sites minéralogiques ainsi découverts font l’objet d’études plus poussées de par leur haut potentiel scientifique, notamment dans le cadre de l’exploration in-situ de Mars. C’est ainsi que le site d’atterrissage d’Oxia Planum pour le rover ESA ExoMars a été découvert.

Sur Terre, certaines minéraux hydratés comme les argiles (phyllosilicates) ou des sels (sulfates) sont connus pour leur potentiel à séquestrer et préserver de la matière organique, notamment dans des contextes géologiques sédimentaires. L’identification sur Mars depuis l’orbite de sites à la composition et géologie similaire en font d’importants candidats à l’exploration de la matière organique sur Mars et de son potentiel exobiologique. A terme, cette carte minérale servira à mieux contraindre la quantité d’eau Martienne piégée aujourd’hui dans ses roches, afin de répondre à une question clef de l’histoire de Mars : la planète a-t-elle « bu » l’essentiel de son eau dans ses roches ? Un autre objectif à long terme est fixé : proposer des sites d’atterrissage pour de futures missions humaines là où ces dépôts minéraux permettront l’utilisation de ressources in-situ via l’extraction de volatiles (dont l’eau) et comme matériaux de construction.

Voir en ligne : Communiqué de Presse de l’ESA

Classé sous :Univers Balisé avec :Communiqué de presse

L’intensification des vents d’ouest responsable d’une augmentation de la fonte en Antarctique

5 septembre 2022 by osuadmin

La calotte glaciaire antarctique représente le plus grand contributeur potentiel à l’élévation globale du niveau des mers. Cette contribution est largement contrôlée par la fonte basale des plateformes de glace (extensions flottantes de la calotte glaciaire ou ice shelves). L’impact des variations climatiques, et tout particulièrement des variations de régime des vents circumpolaires, sur la fonte basale est encore mal connu. Ainsi, on ne sait pas comment l’augmentation du Mode Annulaire Austral (SAM en anglais) va influencer la fonte basale des ice shelves. L’indice SAM est une mesure de la différence de pression atmosphérique entre les moyennes et hautes latitudes de l’hémisphère sud. Les phases positives du SAM sont caractérisées par une intensité accrue et un déplacement vers le sud de la ceinture de vents d’ouest. Elles entraînent un apport accru d’eaux chaudes et salées (upwelling) vers les ice shelves, ainsi qu’une augmentation de la température et de la salinité de l’océan de subsurface près de la base des ice shelves. Le contraire se produit pour les phases négatives du SAM.

Une nouvelle étude, menée par un consortium international impliquant des scientifiques de l’Université Catholique de Louvain en Belgique, du CEREGE, de l’IGE et de l’Université de Northumbria au Royaume-Uni, a étudié l’intensification du SAM. Pour cela, l’équipe a réalisé des expériences numériques idéalisées à l’échelle de l’Antarctique avec un modèle simulant les interactions entre l’océan et la glace de mer, tout en prenant en compte la circulation océanique sous les ice shelves pour différentes phases du SAM. L’étude montre qu’une augmentation d’environ 30 % du SAM entraîne une perte nette de masse basale de 40 Gt an-1 (c’est-à-dire environ la moitié du changement de masse de la calotte glaciaire antarctique sur la période 1992-2011), avec de forts contrastes régionaux autour de l’Antarctique. La compréhension des facteurs physiques à l’origine de cette fonte contrastée fournit des informations essentielles pour appréhender l’élévation future du niveau des mers.

JPEG - 102.4 ko

Voir en ligne : L’article sur le site de l’INSU

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Une nouvelle compréhension du cycle du mercure dans l’Océan Arctique

5 septembre 2022 by osuadmin

La faune arctique contient des niveaux de mercure des plus élevés. La compréhension de l’Océan Arctique est essentielle pour en comprendre les raisons, car le méthylemercure, une neurotoxine bioaccumulable, est formé à partir de mercure inorganique dans l’océan lui-même. Une nouvelle étude révise le bilan du mercure dans l’océan Arctique. Ces travaux constatent que le bilan révisé du mercure dans l’Océan Arctique (environ 1 870 tonnes) est inférieur aux estimations précédentes (2 847 à 7 920 tonnes), ce qui implique une plus grande sensibilité au changement climatique et aux émissions anthropiques. Les résultats mettent à jour la compréhension actuelle du cycle du mercure dans l’Arctique.

La sédimentation du mercure particulaire (122 ± 55 tonnes par an) des eaux de surface vers les sédiments du plateau continentale est le plus grand mécanisme d’élimination du mercure dans l’Océan Arctique. Le bilan révisé de l’Océan Arctique suggère que l’enfouissement du mercure dans les sédiments du plateau continentale (42 ± 31 tonnes par an) pourrait être sous-estimé de plus de 100% (52,2 ± 43,5 tonnes par an). Des chercheurs de l’institut méditerranéen d’océanologie (MIO / CNRS / Aix-Marseille Université / IRD / Université de Toulon), de l’université norvégienne de la science et technologie (NTNU), de l’institut norvégien pour la recherche pour l’eau (NIVA) ont organisé plusieurs expéditions océanographiques en mer de Barents, jusqu’à présent seulement possible en été.

Les premières observations pendent la nuit polaire, publiée le 18 Juillet 2022 dans Nature Geoscience, montrent une perte d’un tiers du mercure total entre l’été et l’hiver, et mettent en évidence un nouveau mécanisme d’enlèvement par le manganèse provenant des sédiments. Aucun changement des concentrations de méthylmercure sont observées, probablement dues à une plus faible affinité pour les particules et à la présence d’espèces gazeuses (dimethylemercure). L’étude du cycle du mercure montre qu’il faudrait réévaluer les budgets et les modèles en considérant l’aspect saisonnier. Le temps de vie du méthylemercure dans l’océan arctique est plus long (25 ans) que celui du mercure inorganique (3 ans), et cette étude suggérée des niveaux élevés de méthylmercure à l’avenir.

JPEG - 122.5 ko

Le doctorant Stephen G. Kohler sur la glace de mer arctique.

Crédit : Christian Morel

Voir en ligne : L’article sur le site de l’INSU

Classé sous :Atmosphère, Océan Balisé avec :Communiqué de presse, Résultat scientifique

Tchouri sous l’œil de Rosetta

22 janvier 2015 by osuadmin

De forme surprenante en deux lobes et de forte porosité, le noyau de la comète 67P/Churyumov-Gerasimenko (surnommée Tchouri) révèle une large gamme de caractéristiques grâce aux instruments MIRO, VIRTIS et OSIRIS de la mission Rosetta de l’ESA, à laquelle participent notamment des chercheurs du CNRS et de plusieurs universités 1, avec le soutien du CNES. On notera notamment pour ce qui concerne notre région la forte implication du Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université) 2. Au nombre de sept, leurs études, publiées le 23 janvier 2015 dans Science, montrent également que la comète est riche en matériaux organiques et que les structures géologiques observées en surface résultent principalement des phénomènes d’érosion. L’instrument RPC-ICA a quant à lui retracé l’évolution de la magnétosphère de la comète alors que l’instrument ROSINA cherche les témoins de la naissance du système Solaire.
  • Le noyau de 67P/Churyumov-Gerasimenko
Exemple de trou circulaire observé sur le noyau de la comète 67P. L’augmentation du contraste révèle la présence d’activité Image prise par la caméra OSIRIS-NAC le 28 août 2014 depuis une distance de 60 km, avec une résolution spatiale de 1 m/pixel. Crédit : ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Les images de la comète 67P prises par la caméra OSIRIS montrent une forme globale inhabituelle composée de deux lobes séparés par un « cou » dont l’origine demeure inexpliquée. Sa surface de composition globalement homogène présente une grande diversité de structures géologiques qui résultent des phénomènes d’érosion, d’effondrement et de redéposition. L’activité de la comète, surprenante à grande distance du Soleil, se concentre actuellement dans la région du « cou ». L’ensemble des images a permis de réaliser un modèle en trois dimensions de la comète et la topographie détaillée du site original d’atterrissage de Philae. Combiné avec la mesure de la masse, ce modèle a donné la première détermination directe de la densité d’un noyau cométaire qui implique une très forte porosité. Ce modèle fournit également le contexte « cartographique » pour l’interprétation des résultats des autres expériences.

  • Les propriétés de surface de 67P/Churyumov-Gerasimenko

L’instrument MIRO a permis aux chercheurs d’établir une carte de la température sous la surface de 67P. Celle-ci montre des variations saisonnières et diurnes de température qui laissent supposer que la surface de 67P est faiblement conductrice au niveau thermique, en raison d’une structure poreuse et peu dense. Les chercheurs ont également effectué des mesures du taux de production d’eau de la comète. Celui-ci varie au cours de la rotation du noyau, l’eau dégagée par la comète étant localisée dans la zone de son « cou ».

  • Une comète riche en matériaux organiques

VIRTIS a fourni les premières détections de matériaux organiques sur un noyau cométaire. Ses mesures de spectroscopie indiquent la présence de divers matériaux contenant des liaisons carbone-hydrogène et/ou oxygène-hydrogène, la liaison azote-hydrogène n’étant pas détectée à l’heure actuelle. Ces espèces sont associées avec des minéraux opaques et sombres tels que des sulfures de fer (pyrrhotite ou troïlite). Par ailleurs, ces mesures indiquent qu’aucune zone riche en glace de taille supérieure à une vingtaine de mètres n’est observée dans les régions illuminées par le Soleil, ce qui indique une forte déshydratation des premiers centimètres de la surface.

La naissance de la magnétosphère d’une comète En utilisant l’instrument RPC-ICA, les chercheurs ont retracé la naissance de la magnétosphère, depuis les premières détections d’ions aqueux jusqu’au moment où l’atmosphère cométaire a commencé à stopper le vent solaire (aux alentours de 3,3 UA 3). Ils ont ainsi enregistré la configuration spatiale de l’interaction précoce entre le vent solaire et la fine atmosphère cométaire, à l’origine de la formation de la magnétosphère de « Tchouri ».

Carte de température sous la surface du noyau (en iso-contours) mesurée par l’instrument MIRO
L’illumination de la surface du noyau est représentée en arrière-plan. Les plus basses températures (-250 °C, en bleu) sont sur la face non ensoleillée (à gauche sur la figure).
Crédit : Gulkis et al.
  • 67P/Churyumov-Gerasimenko, témoin de la naissance du système Solaire

Formées il y a environ 4,5 milliards d’années et restées congelées depuis, les comètes conservent les traces de la matière primitive du système Solaire. La composition de leurs noyaux et de leurs comae donne donc des indices sur les conditions physico-chimiques du système Solaire primitif. L’instrument ROSINA de la sonde Rosetta a mesuré la composition de la coma de 67P (la coma, ou chevelure, est une sorte d’atmosphère assez dense entourant le noyau, elle est composée d’un mélange de poussières et de molécules de gaz) en suivant la rotation de la comète. Ces résultats indiquent de grandes fluctuations de la composition de la coma hétérogène et une relation coma-noyau complexe où les variations saisonnières pourraient être induites par des différences de températures existant juste sous la surface de la comète.

Surface de la comète
La composition de la surface de la comète est très homogène avec une petite différence au niveau de la région du cou qui serait peut-être en glace.
Crédit : F. Capaccioni et al.
  • Les poussières de la comète 67P/Churyumov-Gerasimenko

Le détecteur de poussière GIADA a déjà récolté une moisson de données (taille, vitesse, direction, composition) sur les poussières de dimensions de 0,1 à quelques millimètres émises directement par le noyau. En complément, les images d’OSIRIS ont permis de détecter des poussières plus grosses en orbite autour du noyau, probablement émises lors du précédent passage de la comète.

Mesures ROSINA
Rapport CO2/H2O mesuré par ROSINA sur la comète durant la période du 17 août au 22 septembre 2014.
Crédit : ESA/Rosetta/ROSINA/UBern, BIRA, LATMOS, LMM, IRAP, MPS, SwRI, TUB, Umich
  • Les laboratoires français impliqués dans ces études sont
  • Laboratoire d’astrophysique de Marseille (CNRS/ Aix-Marseille Université)
  • Laboratoire d’études spatiales et d’instrumentation en astrophysique (CNRS/Observatoire de Paris/UPMC/Université Paris Diderot)
  • Laboratoire atmosphères, milieux, observations spatiales (CNRS/UPMC/UVSQ)
  • Institut de recherche en astrophysique et planétologie (CNRS/Université Toulouse III – Paul Sabatier)
  • Laboratoire de physique et de chimie de l’environnement et de l’espace (CNRS/Université d’Orléans)
  • Institut de planétologie et astrophysique de Grenoble (CNRS/Université Joseph Fourier)
  • Laboratoire d’étude du rayonnement et de la matière en astrophysique et atmosphères (CNRS/Observatoire de Paris/UPMC/ENS/Université de Cergy-Pontoise)
  • Institut d’astrophysique spatiale (CNRS/Université Paris-Sud)
  • Centre de recherches pétrographiques et géochimiques (CNRS/Université de Lorraine)
1. Aix-Marseille Université, UPMC, Université Paris Diderot, UVSQ, Université Toulouse III – Paul Sabatier, Université d’Orléans, Université Joseph Fourier, Université de Cergy-Pontoise, Université Paris-Sud, Université de Lorraine ainsi que l’Ecole Normale Supérieure. Des laboratoires mixtes de l’Observatoire de Paris sont également impliqués.
2. Le LAM a notamment conçu et développé la caméra OSIRIS-NAC, instrument imageur à haute résolution spatiale en partenariat avec la société ASTRIUM et plusieurs laboratoires européens.
3. L’unité astronomique (UA) représente la distance moyenne Terre-Soleil. La valeur de 150 millions de kilomètres est communément admise pour 1 UA.

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

James Webb : Premières images d’une exoplanète dans l’infrarouge moyen

6 septembre 2022 by osuadmin

Neuf mois après son lancement, le télescope spatial James Webb fournit des images inédites d’une exoplanète, les premières jamais obtenues dans l’infrarouge moyen. Ce type d’images doit révolutionner notre connaissance des mondes extrasolaires. Une équipe d’astronomes français a été impliquée dans les observations de cette planète et dans la conception des coronographes du télescope.

Lancé le 25 décembre 2021, le James Webb a terminé sa phase de tests en Juillet 2022. Les programmes scientifiques ont depuis débuté et produisent déjà leurs premiers résultats, dont la première image d’une exoplanète obtenue dans l’infrarouge moyen, HIP 65426 b. Il s’agit d’une exoplanète géante très jeune, d’environ 15 millions d’années, située à 90 unités astronomiques de son étoile. D’une masse estimée à environ 7 masses de Jupiter, elle avait été découverte avec l’instrument européen SPHERE [1] au Very Large Telescope [2] en 2017. Les instruments du James Webb rendent désormais possible son observation directe dans l’infrarouge.

C’est grâce aux instruments NIRCAM et MIRI qu’HIP 65426 vient d’être observée dans le cadre d’un programme « Early Release Science » mené par une collaboration internationale incluant plusieurs chercheurs français des laboratoires de l’AIM [3] , IPAG [4] , du LAM [5] , du LESIA [6] , et Lagrange [7] . MIRI est le seul instrument en infrarouge moyen du James Webb. Son système imageur a été conçu en partie par un consortium de laboratoires français mené par le laboratoire AIM. Il embarque un système coronographique grâce auquel la lumière provenant de l’étoile centrale est fortement atténuée, ce qui permet d’obtenir des images des exoplanètes et d’étudier leur atmosphère. Les coronographes de MIRI, qui reposent sur une innovation technologique inventée à l’Observatoire de Paris-PSL atteignent des performances meilleures que celles initialement prévues. La publication récente de ces résultats montre que la lumière stellaire peut être atténuée d’un facteur 10 000 à 100 000. Ces coronographes fonctionnent aux longueurs d’ondes de 10.65, 11.40 et 15.50 microns, choisies spécialement pour sonder l’atmosphère des exoplanètes géantes, identifier des molécules comme l’ammoniac, et complémenter les observations obtenues au sol en infrarouge proche.

Les données recueillies sur HIP 65426 b fournissent la première mesure fiable de la température qui règne dans l’atmosphère de cette exoplanète : 1400°C. Cela correspond à la température de la flamme d’un briquet. On s’attend ainsi à ce que des petits grains de poussière formés de silicates se forment et restent en suspension dans l’atmosphère de l’objet. JWST démontre ainsi son potentiel pour étudier en détail les propriétés physico-chimiques de ces mondes extrasolaires et mieux comprendre leur formation. Les images pourraient aussi révéler de nouvelles planètes encore inconnues dans ces systèmes.

Ces images spectaculaires sont les premières du programme ERS 1387, entièrement dédié aux observations directes de systèmes planétaires proches . Les chercheurs étudieront notamment un système encore plus jeune de 5 Millions d’années, autour duquel il reste encore énormément de gaz et de poussières pour par exemple déterminer si ces poussières contiennent de la glace d’eau comme les comètes dans notre système solaire.

PNG - 446 ko

images de l’exoplanète HIP 65426 b observées par NIRCAM (3.3 et 4.4 microns) et MIRI (11.4 et 15.5 microns). L’étoile blanche indique la position de l’étoile hôte.

Crédit : NASA/STScI/ESA publié par Carter et al. 2022

JPEG - 203.2 ko

Images coronographiques simulées (en haut) et mesurées (en bas) avec les 4 coronographes de MIRI fonctionnant aux longueurs d’onde 10.65, 11.40, 15.50 et 23.00 microns.

Crédit : Boccaletti et al. 2022

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Le CNRS, acteur majeur de la mission Rosetta

6 novembre 2014 by osuadmin

Le 12 novembre, entre 17h et 17h30, l’atterrisseur Philae de la sonde Rosetta de l’Agence spatiale européenne (ESA) tentera de se poser sur la comète 67P-Churyumov-Gerasimenko. Une mission périlleuse et inédite grâce à laquelle des scientifiques, notamment du CNRS et de différentes universités françaises, comptent lever le voile sur certains des mystères de nos origines. Le CNRS a participé à l’élaboration de treize instruments scientifiques de la mission, dont trois pour lesquels il est leader. Partout en France, il sera possible de suivre en direct cette première mondiale, qui sera retransmise en vidéo (en partenariat avec la Cité des sciences et de l’industrie et le CNES). Des chercheurs et ingénieurs du CNRS seront notamment mobilisés ce jour-là pour répondre, en direct sur Twitter avec #PoseToiPhilae, aux questions du public sur la mission et ses enjeux scientifiques.

La mission Rosetta de l’ESA a pour objectif de recueillir des données sur la composition et les propriétés du noyau de la comète 67P-Churyumov-Gerasimenko. Si Rosetta est arrivée à destination le 6 août dernier en se mettant en orbite autour de la comète, ce n’est pas encore le cas de son petit atterrisseur, Philae, qui essaiera de se poser le 12 novembre sur celle-ci. Ce sera la première fois qu’un atterrissage sera tenté sur un noyau cométaire !

La sonde Rosetta est équipée de 21 instruments scientifiques qui permettent d’effectuer un ensemble de mesures précises et complémentaires : composition chimique des matériaux de la surface, structure interne et composition du noyau, images directes et indirectes à différentes longueurs d’ondes, dynamique des émissions de poussières et leurs types, dégazage de surface, magnétisme, etc.

Le CNRS contribue à treize instruments de Rosetta : huit sur la sonde qui est en orbite autour de 67P-Churyumov-Gerasimenko, quatre sur l’atterrisseur Philae et un (CONSERT) présent à la fois sur l’orbiteur et l’atterrisseur. Le CNRS est leader de trois d’entre eux : CIVA, RPC-MIP (tous deux sur Philae) et CONSERT. C’est notamment l’instrument CIVA qui devrait prendre les premiers clichés de la surface de la comète. Rosetta est un véritable couteau suisse scientifique développé par un consortium international de laboratoires et agences (Europe et Etats-Unis). L’étude de l’environnement externe et interne de la comète permettra d’en savoir plus sur ces « boules de neige sales », et donc sur la formation du Système solaire et nos origines.

Les laboratoires français impliqués dans Rosetta-Philae :

  • CSNSM (CNRS/Université Paris-Sud)
  • GET (CNRS/IRD/Université Paul Sabatier – Toulouse III)
  • IAS (CNRS/Université Paris-Sud)
  • ICN (CNRS/Université Nice Sophia Antipolis)
  • IPAG (CNRS/Université Joseph Fourier)
  • IRAP (CNRS/Université Paul Sabatier – Toulouse III)
  • LAM (CNRS/AMU)
  • LAAS (CNRS)
  • LATMOS (CNRS/UPMC/UVSQ)
  • LERMA (Observatoire de Paris/CNRS/ENS/Université Cergy Pontoise/UPMC)
  • LESIA (Observatoire de Paris/CNRS/Université Paris Diderot/UPMC)
  • LISA (CNRS/Université Paris Diderot/UPEC)
  • LPC2E (CNRS/Université d’Orléans)
  • LPP (École Polytechnique/CNRS/Université Paris-Sud/UPMC)

Suivez en direct la tentative d’atterrissage de Philae sur la comète dans différents lieux en France notamment à Paris : Cité des sciences et de l’industrie, en partenariat avec le CNRS, l’ESA, le CNES et l’Observatoire de Paris (entrée libre et gratuite le 12/11 à partir de 15h).

Le CNRS est également présent dans d’autres événements prévus ce jour-là, notamment à Toulouse, au Bourget, à Grenoble, à Orléans et à Marseille.

Sur une page web, vous pourrez suivre en direct et en vidéo l’atterrissage de Philae sur la comète et poser vos questions sur Twitter concernant la science faite grâce à Rosetta, ses enjeux et les futures étapes. Toute la journée du 12 novembre, des chercheurs et ingénieurs du CNRS seront mobilisés pour répondre aux questions du public sur Twitter. Pour cela, envoyez vos questions en utilisant le mot-clic #PoseToiPhilae.

Classé sous :Univers Balisé avec :Communiqué de presse

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Pages provisoires omises …
  • Page 52
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter