• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Surface continentale

Que pourrait nous apprendre l’analyse magnétique d’échantillons de roche collectés sur Mars ?

19 février 2025 by osuadmin

Un appel de la communauté scientifique en faveur d’un retour d’échantillons martiens

A l’heure où nous parlons, le rover Perseverance de la NASA s’apprête à réaliser son 28ème forage à la surface de la planète Mars. Depuis 4 ans, ce véritable couteau suisse scientifique a déjà parcouru plus de 30 km et collecté 27 cylindres de roches martiennes de la taille d’un stylo. Une fois qu’un total d’environ 40 échantillons seront collectés puis déposés à un point de rendez-vous, une mission gargantuesque appelée Mars Sample Return (MSR) menée par la NASA avec participation de l’ESA, a pour objectif de rapporter les échantillons sur Terre.

A cause de l’extrême difficulté à récupérer les échantillons sur Mars, ainsi qu’à assurer les conditions de quarantaine les plus strictes une fois sur Terre, le budget estimé de MSR dépasse aujourd’hui les 10 milliards de dollars. De quoi refroidir les décisionnaires des nations impliquées dans la mission. Afin d’encourager les agences spatiales et décisionnaires à poursuivre les efforts de MSR, des chercheurs du monde entier se sont unis pour détailler les nombreux arguments scientifiques en faveur de MSR dans une édition spéciale parue dans PNAS. Ils y posent les questions fondamentales auxquelles seuls des analyses de laboratoires pourront répondre, avec en tête la question ultime de l’habitabilité passée de la Planète Rouge. Parmi les disciplines représentées, le paléomagnétisme apparaît comme un outils clé pour la compréhension de l’évolution de l’intérieur, de la surface et de l’atmosphère de Mars.

Le magnétisme des roches martiennes

Mars est une planète magnétique. La croûte martienne est aimantée suite à l’existence d’un champ magnétique généré en son noyau il y a environ 4 milliards d’années, lorsque la surface était peut-être habitable. L’évolution et l’extinction de ce champ magnétique dit « champ de dynamo » pourraient avoir joué un rôle central dans l’évolution de l’atmosphère primitive de Mars. Une hypothèse importante est qu’une épaisse atmosphère martienne aurait disparu suite au déclin du champ de dynamo, provoquant la transition d’une planète chaude et humide à un monde aujourd’hui froid et sec.

Pour vérifier cette hypothèse fondamentale et nous éclairer sur les causes de la perte d’atmosphère de Mars, la nature et l’histoire du champ de dynamo et de l’aimantation crustale doivent être mieux comprises qu’elles ne le sont aujourd’hui. Cela ne peut se faire que par l’analyse d’échantillons anciens bien conservés, orientés, avec un contexte géologique disponible pour une étude en laboratoire.

Certains minéraux contenus dans les roches terrestres et extraterrestres ont l’incroyable capacité de préserver un enregistrement (appelé aimantation) des champs magnétiques auxquels ils ont été exposés. Les disciplines du magnétisme des roches et du paléomagnétisme permettent de caractériser ces minéraux, la période d’acquisition de l’aimantation, ainsi que l’intensité et l’orientation du champ magnétique qui en fût à l’origine. C’est notamment grâce à l’étude paléomagnétique de la météorite martienne ALH 84001 que l’on a compris que Mars a vraisemblablement généré un champ de dynamo il y a 4 milliard d’années. Malheureusement, les météorites aimantées de l’âge d’ALH 84001 sont quasi inexistantes. La compréhension de l’activité magnétique de Mars ne peut donc passer que par l’étude d’échantillons rapportés directement du sol martien.

En particulier, les mesures magnétiques sur les échantillons de MSR devraient permettre de reconstituer l’intensité et l’orientation du champ de dynamo martien au cours du temps, et d’approximativement dater son extinction. En corrélant ces données avec des indicateurs minéralogiques, chimiques et isotopiques, il serait possible de comprendre l’impact (ou l’absence d’impact !) de l’extinction de la dynamo sur l’évolution de la surface et de l’atmosphère de Mars, et donc sur l’évolution des conditions d’habitabilité de la planète. Ces mesures magnétiques pourraient également contraindre d’autres processus clés de l’évolution martienne, notamment la manière dont le champ a été généré, la possibilité d’une tectonique des plaques, la minéralogie de la croûte, la manière dont l’eau et les laves se sont écoulées à la surface, et même si les échantillons ont conservé des fossiles.

Fig. 1. Schéma montrant les six objectifs scientifiques relatifs au magnétisme martien. 1. Déterminer l'histoire de l'intensité du champ de dynamo martien. 2. Déterminer l'histoire de la direction du champ de dynamo martien. 3. Tester l'hypothèse selon laquelle Mars a connu une tectonique des plaques ou une dérive des pôles. 4. Déterminer l'histoire de l'altération thermique et aqueuse des échantillons. 5. Identifier les sources de l'aimantation crustale martienne. 6. Caractériser les processus sédimentaires et magmatiques sur Mars.
Fig. 1. Schéma montrant les six objectifs scientifiques relatifs au magnétisme martien. 1. Déterminer l’histoire de l’intensité du champ de dynamo martien. 2. Déterminer l’histoire de la direction du champ de dynamo martien. 3. Tester l’hypothèse selon laquelle Mars a connu une tectonique des plaques ou une dérive des pôles. 4. Déterminer l’histoire de l’altération thermique et aqueuse des échantillons. 5. Identifier les sources de l’aimantation crustale martienne. 6. Caractériser les processus sédimentaires et magmatiques sur Mars.

Classé sous :Surface continentale, Terre, Univers Balisé avec :Brève

La mer monte et les deltas s’enfoncent : l’avenir fragile des berceaux de la civilisation à l’Anthropocène

25 novembre 2024 by osuadmin

Un groupe international de scientifiques d’Europe, des États-Unis et d’Asie incluant des scientifiques du CNRS (voir encadré), explore comment les deltas fluviaux ont joué un rôle central dans le développement des sociétés au cours des 7 000 dernières années. Depuis l’essor des premiers centres de pouvoir et des cités-États en Mésopotamie, dans le delta du Nil et dans les deltas asiatiques, l’étude révèle comment la croissance naturelle de ces deltas — alimentée par les sédiments des fleuves — a accompagné le progrès humain. Les deltas ont favorisé des innovations en gestion de l’eau, contrôle de la subsidence et atténuation de l’érosion, créant ainsi une profonde interdépendance entre la civilisation humaine et ces environnements dynamiques. Cependant, alors que les deltas continuent de soutenir des mégapoles et de vastes activités économiques, ils sont de plus en plus sous pression à l’Anthropocène.

Pour assurer leur durabilité, les deltas doivent résister à l’élévation du niveau de la mer due au réchauffement climatique. Pourtant, les pressions humaines et la réduction des apports sédimentaires les rendent de plus en plus vulnérables, ce qui constitue une menace majeure pour leur survie. L’étude expose les défis critiques auxquels sont confrontés les deltas, notamment en matière de gouvernance, de gestion et de planification, et souligne l’importance des nouvelles technologies et stratégies pour répondre à ces problèmes. Malgré les solutions potentielles, les auteurs insistent sur le fait que sans stabilisation du climat, il sera extrêmement difficile de préserver les deltas. Dans les scénarios d’élévation extrême du niveau de la mer (jusqu’à ou dépassant deux mètres dans les deux prochains siècles), les deltas pourraient progressivement s’enfoncer, rendant la vie humaine et les activités économiques dans ces régions insoutenables.

Cette étude envisage un avenir marqué par des migrations massives depuis des deltas inondés vers des terres plus élevées, mettant potentiellement fin à la longue relation entre les humains et les deltas. En fin de compte, le monde pourrait devoir s’adapter à vivre avec des deltas partiellement ou entièrement submergés.

Classé sous :Surface continentale Balisé avec :Résultat scientifique

Impact des mégots de cigarettes sur la diversité des bactéries et des métaux en milieu marin

5 juin 2020 by osuadmin

Les chercheurs de l’Institut méditerranéen d’océanologie (MIO, France) et de l’Institut national des sciences et technologies de la mer (INSTM, Tunisie) se sont donc donné comme objectif d’évaluer l’impact des mégots de cigarettes sur la diversité des microorganismes et la libération de métaux dans l’environnement marin en Tunisie.

Ils ont montré que les mégots de cigarettes augmentaient les concentrations en fer, manganèse et zinc dans le milieu marin, contribuaient à l’acidification de l’eau de mer et modifiaient la composition des bactéries présentes dans les sédiments de surface en favorisant le développement de bactéries généralement connues pour vivre dans des sites hydrothermaux sous-marins profonds, appelés « fumeurs noirs ».

Classé sous :Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

Marseille il y a un million d’années : un jardin d’Eden ?

6 septembre 2024 by osuadmin

Il y a 1 Ma (million d’années), une vague migratoire venue de l’est et comportant des hommes (des homo erectus) et des animaux (des grands mammifères), déferlait sur la rive nord-méditerranéenne avec pour objectif la conquête de nouveaux territoires. À cette époque, les écosystèmes qu’ils visaient pour assurer leur survie étaient des milieux humides, de véritables oasis de vie et de nourriture potentielle au sein d’un environnement méditerranéen globalement aride. Le tuf de Marseille avec sa diversité écologique, ses plantes comestibles dont des proto-céréales, des fruits et des herbacées, et sa ressource en eau, fut un site favorable à l’accueil de cette dynamique migratoire.

Une étude multidisciplinaire impliquant le CNRS Terre & Univers (voir encadré), sur des tufs calcaires fluviatiles proposent une reconstruction du paléoenvironnement de Marseille au début du Pléistocène, il y a 1 Ma. Les mesures paléomagnétiques ont permis d’identifier l’inversion magnétique de Jaramillo et de dater le tuf de Marseille entre 1,06 et 0,8 Ma. Les données sédimentologiques montrent l’existence d’un environnement de dépôt varié comprenant des barrages naturels formés par des accumulations de plantes stabilisées par des précipitations de carbonate, favorisant ainsi le développement de plans d’eau en amont bordés de marécages. Les rapports isotopiques du carbone indiquent que les tufs de Marseille ne sont pas des travertins1 mais sont associés à des sources et écoulements d’eau froide. Les reconstructions climatiques basées sur les données polliniques indiquent un climat légèrement plus frais (surtout en hiver) et plus humide que l’actuel.

Les analyses de pollens fossiles indiquent un paysage végétal semi-arboré, diversifié, en mosaïque, dominé par une forêt méditerranéenne de pins et de chênes avec du hêtre, du sapin, et de l’épicéa, des espèces à présent rares ou qui ne poussent plus à basse altitude en Provence en raison de l’occupation humaine essentiellement. La présence du châtaignier est inattendue en milieu calcaire, mais cet arbre pouvait pousser sur les argiles décarbonatées de l’Oligocène qui affleuraient partout dans le bassin de Marseille. Le long des cours d’eau, la forêt riveraine était diversifiée et comprenait des noyers et des platanes, comme c’est le cas de nos jours en Méditerranéen orientale, et des arbres comme l’aulne, le saule, le noisetier et le frêne. Le régime alimentaire potentiel des premiers homininés, que nous avons reconstitué à partir du pollen et des macrorestes végétaux, était varié et comprenait les fruits du châtaignier, du noisetier, du noyer, des Rosacées arborescentes comme différentes espèces de pruniers ou de pommiers. Des restes de vigne ont également été trouvés qui montrent que les raisins participaient déjà à la diète alimentaires des frugivores dont les homininés. Parmi les nombreuses herbes comestibles identifiées, il faut signaler les Composées qui comportent de nombreuses salades, des orties ou la mauve, une plante particulièrement appréciée en Afrique du Nord.

A : Cerealia L = 50.16 µm; B : Cerealia L = 46.02 µm ; C : Cerealia L = 43.66 µm ; D : Cerealia L = 43.26 µm ; E : Secale sp. L = 61.15 µm; F : Delitschia L = 20.3 µm; G : Coniochaeta L = 14.63 µm; H : Valsaria sp. L = 24.59 µm; I : Olea sp. L = 22.39 µm O : Poaceae L = 31.62 µm ; P : Poaceae L = 37.52 µm.
A : Cerealia L = 50.16 µm; B : Cerealia L = 46.02 µm ; C : Cerealia L = 43.66 µm ; D : Cerealia L = 43.26 µm ; E : Secale sp. L = 61.15 µm; F : Delitschia L = 20.3 µm; G : Coniochaeta L = 14.63 µm; H : Valsaria sp. L = 24.59 µm; I : Olea sp. L = 22.39 µm O : Poaceae L = 31.62 µm ; P : Poaceae L = 37.52 µm.

Les populations d’homininés pouvaient potentiellement se nourrir des ressources de la mer, diversifiées à l’époque, et des ressources terrestres, dont des grands herbivores. La découverte la plus surprenante est la présence de pollen de céréales (des proto-céréales en raison de leur ancienneté) dont le seigle qui a pu être identifié. Ces proto-céréales, qui poussaient au sein du cortège d’herbacées steppiques, pouvaient substantiellement enrichir en hydrate de carbone la diète alimentaire des mammifères (dont les homininés) qui fréquentaient le bassin de Marseille il y a un million d’années. Le bassin de Marseille est le troisième site après ceux d’Acigol et de Kocabas (Andrieu-Ponel et al., 2021), dans le sud-ouest de l’Anatolie, à montrer la présence de pollen de proto-céréales bien avant le début du Néolithique il y a 12 000 ans. L’identification de spores de champignons coprophiles montre la présence in situ de troupeaux de grands herbivores. Il est possible que, comme en Anatolie, la perturbation des écosystèmes par les grands herbivores soit à l’origine de la mutation génétique des Poacées et de l’apparition des céréales. Ces sites montrent que les populations humaines ne sont pas à l’origine de l’apparition des céréales, mais qu’il s’agirait plutôt d’un processus naturel lié aux interactions biotiques entre les populations de grands herbivores et les écosystèmes steppiques.

Au Néolithique, l’Homme, devenu agriculteur par nécessité de fait de la réduction de la faune mammalienne, aurait cultivé des plantes comestibles qui préexistaient au sein des écosystèmes herbacés. Cette nouvelle découverte de proto-céréales nécessite une nouvelle vision de l’histoire de la nutrition humaine comme suggéré antérieurement (Andrieu-Ponel et al., 2021).

Modèle de dépôt conceptuel pour la dynamique sédimentaire continentale au Pléistocène inférieur dans le bassin de Marseille.
 Modèle de dépôt conceptuel pour la dynamique sédimentaire continentale au Pléistocène inférieur dans le bassin de Marseille. Lph : rudstone phytoclastique (barrage) ; Lst : Phytoherme (environnement palustre avec des roseaux) ; Sb : calcarénite péloïdale-bioclastique (hydrodynamique faible à modéré : retenue d’eau en amont d’un barrage) ; Lo : rudstones oncoïdaux (remplissages de chenaux fluviatiles) ; cg. : conglomérats (remplissage de chenaux entrecroisés ou barres fluviatiles) ; sl. : limon (plaine d’inondation) ; fb. : blocs effondrés. Conceptual depositional model for the lower Pleistocene continental sedimentation in the Marseille Basin. Lph : phytoclastic rudstone (barrage) ; Lst : Pytohermal tufa (paludal environments with reeds) ; Sb : bioclastic-peloidal calcarenites (low to medium energy dammed environments) ; Lo :  oncoidal rudstones (channel  fills) ;  cg. : conglomerates (braided channel fills or bars) ; sl. : silts (floodplain) ; fb. : fallen blocks.
1. Formations carbonatées associées à des résurgences d’eau hydrothermale.

Classé sous :Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

La plus ancienne contamination en métaux aux pieds des pyramides de Gizeh

6 août 2024 by osuadmin

Cette étude est le fruit d’une collaboration internationale et interdisciplinaire, dont le CNRS fait partie, qui a permis de produire plusieurs articles sur les reconstructions paléoenvironnementales du plateau de Gizeh où ont été construites les pyramides de Khéops, Képhren et Mykérinos, et de nombreux tombeaux pharaoniques. Si ce site a fait l’objet de nombreux travaux archéologiques, les approches géomorphologiques, paléoécologiques et géochimiques y sont rares voire inexistantes. La mise en œuvre de ces approches simultanément sur des échantillons du même site révèle la plus ancienne contamination régionale en cuivre et en arsenic de plus de 5000 ans, résultant de l’utilisation d’outils, en particulier pour l’édification de la nécropole.

Cette découverte a été rendue possible grâce aux analyses géochimiques réalisées sur une carotte sédimentaire forée aux pieds des pyramides, dans un ancien bras du Nil aujourd’hui disparu et qui permettait d’acheminer les matériaux de construction, ancien bras caractériser par une prospection géophysique et géomorphologique publiée par la même équipe 1 ,2 ,3 . 

Les différentes phases de développement de la nécropole de Gizeh peuvent ainsi être caractérisées chimiquement depuis la période prédynastique jusqu’au Nouvel Empire, avec une attention particulière portée sur la construction des pyramides et du Sphinx. Cette étude conforte des résultats archéologiques et contribue à lever des incertitudes sur les dates d’édification de tombes pharaoniques, en particulier pendant la première dynastie, plus de 3000 ans avant notre ère. Ces travaux se fondent parfaitement dans les découvertes archéologiques antérieures et fournissent des données originales qui ouvrent de nouvelles perspectives de recherche sur les nécropoles de la vallée du Nil au moyen de traceurs indépendants et complémentaires des analyses archéologiques.

1. Sheisha H. et al. (2022). PNAS, 119(37), e2202530119.
2. Sheisha H. et al. (2023). Quaternary Science Reviews, 312, 108172.
3. Younes G. et al. (2024). Journal of Archaeological Science: Reports, 53, 104303.

Classé sous :Surface continentale Balisé avec :Brève, Résultat scientifique

Le recul actuel des glaciers tropicaux andins dépasse celui enregistré pendant les périodes chaudes de ces 11 000 dernières années

20 août 2024 by osuadmin

Les scientifiques ont analysé l’évolution plurimillénaire de glaciers tropicaux andins situés en Colombie, au Pérou et en Bolivie au cours de l’Holocène. La particularité de la période de l’Holocène est qu’elle est caractérisée par une longue phase chaude entre les 10 000 et 4 000 dernières années, appelée dans l’hémisphère nord le Holocene Thermal Maximum (HTM). Les chercheurs ont découvert que la taille actuelle des glaciers tropicaux andins est plus petite que celle qu’ils avaient pendant cette longue phase chaude de l’Holocène.

Pour documenter l’évolution des glaciers sur le temps long les chercheurs se sont concentrés sur le socle rocheux récemment déglacé par le recul des glaciers. Ils ont ensuite mesuré la concentration en isotopes cosmogéniques, en particulier le béryllium-10 et le carbone-14 in situ, contenus dans les échantillons de roche prélevés à proximité immédiate du front actuel des glaciers. En effet, ces deux isotopes, issus des réactions nucléaires provoquées par l’impact des particules du rayonnement cosmique sur les minéraux des roches, s’accumule une fois que le glacier se retire. Cela déclenche ainsi un « chronomètre géologique ». La glace, quant à elle, joue un rôle de bouclier et protège la roche de ce bombardement cosmique. En somme, la concentration en isotopes cosmogéniques dans la roche dépend du temps d’exposition au rayonnement cosmique et de l’érosion glaciaire qui décape les isotopes cosmogéniques accumulés en surface.

Moraines latérales Charquini (5 960 m), Cordillère royale (Bolivie).
Moraines latérales Charquini (5 960 m), Cordillère royale (Bolivie).© Vincent JOMELLI/CNRS Images

Dans les Alpes et dans d’autres régions du monde des analyses similaires réalisées par le passé ont montré des valeurs isotopiques fortes mesurées dans les roches. Ces taux élevés sont dus au fait qu’entre ~10000 et 4000 ans les glaciers alpins et leurs cousins situés dans l’hémisphère nord ont fortement reculé. Leur front était positionné à des altitudes légèrement supérieures à ce qui est observé actuellement. La roche a donc été bombardée pendant environ 6000 ans par le rayonnement cosmique permettent l’accumulation de 10Be et 14C dans celle-ci. Au cours de ces 4000 dernières années les glaciers ont connu des phases de crue arrêtant la production d’isotopes dans le socle rocheux. En utilisant un modèle d’écoulement glaciaire combiné à un modèle d’érosion et en comparant les valeurs isotopiques obtenues dans les roches andines avec celles déjà connues provenant d’échantillons prélevés dans les Alpes ou dans d’autres régions de l’hémisphère nord les chercheurs ont mis en évidence un taux isotopique extrêmement faible, quasi nul, accumulé dans les roches andines. Ce taux particulièrement faible s’explique par le fait que le front des glaciers tropicaux andins n’a jamais été situé à des altitudes aussi hautes au cours de ces 11700 dernières années. Autrement dit les glaciers tropicaux andins n’ont jamais été aussi petits qu’aujourd’hui.

Glacier de Chacaltaya, 5 390 m, Cordillère royale (Bolivie).
Glacier de Chacaltaya, 5 390 m, Cordillère royale (Bolivie).© Vincent JOMELLI/CNRS Images

Classé sous :Atmosphère, Océan, Surface continentale Balisé avec :Communiqué de presse, Résultat scientifique

  • Page 1
  • Page 2
  • Page 3
  • Pages provisoires omises …
  • Page 5
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Ganymède et Callisto : destins gelés aux origines divergentes
  • Questionnaire : Quelles sciences en 2040 ? Les partenaires du site Aix-Marseille lancent une démarche participative
  • Les formations en alternance de l’OSU Pythéas
  • L’équipe COSMOS – Web dévoile le plus grand panorama de l’univers profond
  • Identifier les seuils écologiques pour une gestion optimisée de la biodiversité et des écosystèmes

Commentaires récents

Aucun commentaire à afficher.

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter