• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Annuaire
  • Webmail
  • Intranet
  • Portail numérique
  • Service pour le Respect et l’Égalité
Ressources – OSU Institut Pytheas

Ressources - OSU Institut Pytheas

Ressources

  • Actualité
  • Agenda
  • Ressources
  • Emplois / stages
  • Retour

Univers

First Light Imaging lauréat du programme européen Horizon 2020

17 avril 2015 by osuadmin

La Commission Européenne soutient First Light Imaging, la jeune startup Aixoise née d’une collaboration entre des scientifiques du Laboratoire d’Astrophysique de Marseille (OSU Pythéas /CNRS – Aix-Marseille Université), de l’Institut de Planétologie et d’Astrophysique de Grenoble (OSUG / CNRS – Université Joseph Fourier) et de l’Observatoire de Haute –Provence (OSU Pythéas / CNRS). En effet, cette Startup qui démarre très très fort et qui s’est déjà vue attribuer plusieurs distinctions vient de se voir accorder une subvention pour le Développement de sa caméra Infrarouge C-Red One, la plus sensible et rapide au monde.

Meyreuil, le 08 Avril 2015 -La Commission Européenne, dans le cadre de son programme Horizon 2020 Instrument PME phase 2, a sélectionné 94 lauréats sur 629 projets dans toute l’Europe. Ce programme, qui favorise l’excellence scientifique, la primauté industrielle et les défis de société pour placer l’Europe comme terre d’excellence, encourage les entreprises innovantes à fort potentiel de croissance à s’internationaliser et à devenir des leaders sur leur marché.

First Light Imaging fait partie des 6 lauréats français primés, et va grâce à cette subvention finaliser le développement d’une caméra scientifique Infrarouge, ultra rapide et sensible, présentant des performances inédites. Cette caméra révolutionnaire trouvera ses domaines d’application dans l’astronomie, l’imagerie médicale, l’industrie et la défense.

First Light Imaging est une Start-up créée en 2011, issue de laboratoires publics de recherche, qui conçoit et fabrique des caméras de haute technologie. La société a été primée deux fois par le Ministère de l’Enseignement Supérieur et de la Recherche et la Banque Publique d’Investissement (BPI France). Elle commercialise à ce jour OCAM², la caméra scientifique la plus rapide et sensible au monde dans le domaine du visible. OCAM² équipe les plus grands télescopes mondiaux tels que le Subaru Telescope et le GranTeCan.

Cette reconnaissance au niveau européen du savoir-faire de First Light Imaging marque une nouvelle étape dans le développement de la Start-up Aixoise, après avoir obtenu au printemps dernier un prestigieux contrat avec La NASA.

Classé sous :Ingénierie, Univers Balisé avec :Communiqué de presse

Rosetta détecte de l’azote moléculaire pour la 1ère fois dans une comète

19 mars 2015 by osuadmin

Rosetta a mesuré pour la 1ère fois de l’azote moléculaire dans une comète, fournissant des clés sur l’environnement thermique dans lequel 67P/Churyumov-Gerasimenko s’est formée.
  • 138 mesures collectées par ROSINA

Rosetta est arrivée sur sa comète en août dernier et depuis, elle a collecté des données considérables sur 67P et son environnement grâce à ses 11 instruments scientifiques. La détection in situ d’azote moléculaire sur une comète fait l’objet de recherches depuis très longtemps. Jusqu’à maintenant, l’azote a toujours été détecté en liaison avec d’autres composés, dont l’acide cyanhydrique (HCN) ou l’ammoniac (NH3), par exemple. Cette détection est particulièrement importante parce qu’on pense que l’azote moléculaire est le type d’azote le plus courant lors de la formation du Système solaire. Dans les régions extérieures plus froides, il a probablement fourni la source principale d’azote incorporé dans les planètes gazeuses. Il domine également l’atmosphère dense de Titan, la plus importante lune de Saturne, et il est présent dans les atmosphères et les glaces de surface de Pluton et de Triton (lune de Neptune). C’est dans les régions froides des confins du Système solaire que l’on pense que les comètes de la famille de 67P se sont formées. Ces nouveaux résultats s’appuient sur 138 mesures collectées par ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument) du 17 au 23 octobre 2014 quand Rosetta était à environ à 10 km du centre de la comète. « La présence d’azote moléculaire impose des contraintes importantes pendant la formation de la comète parce qu’il nécessite de très basses températures pour être piégé dans la glace » explique Martin Rubin de l’Université de Berne, auteur principal des résultats publiés dans le journal Science.

On pense que le piégeage de l’azote moléculaire dans la glace au sein de la nébuleuse protosolaire (nuage de gaz qui a donné naissance au Système solaire) s’est produit à des températures similaires à celles nécessaires à la capture du monoxyde de carbone. Donc, afin d’introduire des contraintes dans les modèles de formation des comètes, les scientifiques comparent le rapport de l’azote moléculaire et du monoxyde de carbone (N2/CO) mesuré dans la comète avec celui de la nébuleuse protosolaire, tel qu’il est calculé depuis le rapport azote sur carbone mesuré sur Jupiter et dans le vent solaire. Pour la comète 67P/Churyumov-Gerasimenko, le rapport s’avèrent 25 fois plus faible que celui attendu dans la nébuleuse protosolaire. « La mesure du rapport N2/CO nous permet de déterminer la température de formation de 67P/churyumov-Gerasimenko dans la nébuleuse primitive. Celle-ci se serait formée autour de 30 K (-243°C NDLR) » explique Olivier Mousis, du Laboratoire d’Astrophysique de Marseille (LAM) au CNRS. Un scénario suppose donc des températures d’environ -250°C ou peut-être -220°C, avec un piégeage relativement inefficace de l’azote moléculaire dans une glace d’eau plutôt amorphe ou de la glace d’eau « cage » appelée clathrate. Dans les 2 cas, cela aurait directement entrainé un faible rapport. Ou alors, l’azote moléculaire a pu être piégé plus efficacement à des températures encore plus basses, environ -253°C dans la même région que Pluton et Triton, d’où des glaces relativement riches en azote observées à leur surface. Le réchauffement ultérieur de la comète par la décroissance des noyaux radio-actifs, ou quand la comète s’est rapprochée du Soleil, pourrait avoir été suffisant pour déclencher le dégazage de l’azote et donc une réduction du rapport au fil du temps.

67P est une comète de la famille Jupiter
Son orbite dure 6,5 ans et débute juste derrière celle de Jupiter par rapport au Soleil pour atteindre le point le plus proche de notre étoile entre les orbites de la Terre et de Mars (périhélie). La comète proviendrait de la ceinture de Kuiper et aurait subi les perturbations gravitationnelles de Jupiter pour se retrouver sur son orbite actuelle.
Crédit : ESA

« Ce processus de formation à très basse température est similaire à celui qui a permis à Pluton et Triton d’acquerir leur glace riche en azote et est cohérent avec l’origine de la comète dans la ceinture de Kuiper », selon Martin Rubin. Le seul autre corps du Système solaire avec une atmosphère dominée par l’azote est la Terre. La supposition la plus courante de cette origine repose sur la tectonique des plaques, avec des volcans relâchant l’azote emprisonné dans les roches silicatées du manteau. Cependant la question du rôle joué par les comètes apportant cet ingrédient demeure. Pour évaluer la contribution possible de comètes comme celle étudiée par Rosetta dans l’apport d’azote à l’atmosphère terrestre, les scientifiques supposent que le rapport isotopique entre 14N et 15N dans la comète est le même que celui mesuré sur Jupiter et dans le vent solaire, ce qui reflète la composition de la nébuleuse protosolaire. Cependant, ce ratio isotopique est beaucoup plus élevé que celui mesuré dans d’autres composés présent dans les comètes et qui contiennent de l’azote comme l’hydrogène cyanhydrique et l’ammoniac. Le rapport 14N/15N de la Terre se situe approximativement entre ces 2 valeurs, et par conséquent si il y avait un mélange équilibré entre les molécules formées d’une part et celles de l’hydrogène cyanhydrique et l’ammoniac d’autre part dans les comètes, il pourrait être concevable que l’azote de la Terre provienne de comètes. « Cependant, l’azote moléculaire trouvé est minoritaire par rapport à d’autre formes d’azote cométaire telles que CN, HNC et NH2+, qui sont, elles, enrichies fortement en isotope 15N par rapport à l’atmosphère terrestre, explique Bernard Marty, cosmochimiste des isotopes au Centre de Recherche Pétrographique et Géochimique (CRPG) du CNRS à Nancy. Cette mesure confirme donc que ce type de comète ne peut être à l’origine de l’atmosphère et des océans de notre planète. » « Rosetta est à environ 5 mois du périhélie maintenant (passage au plus près du Soleil NDLR). Nous allons regarder comment la composition gazeuse de la comète évolue pendant cette période et nous allons essayer de déchiffrer ce que cela nous raconte sur sa vie passée. »

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

Vers la présence d’une source de méthane dans l’océan d’Encelade ?

2 février 2015 by osuadmin

Des chercheurs du Laboratoire d’Astrophysique de Marseille (LAM, Aix-Marseille Université / CNRS) et de l’Institut Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UTINAM, Université de Franche-Comté / CNRS) et, en collaboration avec des chercheurs du Southwest Research Institute (San Antonio, Etats-Unis), viennent de montrer que le méthane observé par la mission Cassini dans les geysers d’Encelade, un des principaux satellites de Saturne, pourrait provenir d’une source contemporaine localisée dans son océan caché. Ce résultat vient d’être publié dans la revue Geophysical Research Letters.

Les données de la mission NASA/ESA Cassini ont permis aux scientifiques de mieux comprendre les processus en œuvre à l’intérieur d’Encelade, une des lunes les plus intrigantes de Saturne. Pressenti comme étant un monde de glace à priori inactif, Encelade a créé la surprise en 2005 lorsque Cassini a montré, dans la région du pôle sud, la présence de geysers éjectant de la vapeur d’eau dans l’espace alimentant l’anneau E de Saturne en particules glacées. On pense désormais qu’Encelade abrite un océan d’eau liquide enfoui sous plusieurs dizaines de kilomètres de croûte de glace, et que les panaches proviennent de cet océan.

La sonde Cassini a effectué plusieurs survols à l’intérieur des panaches permettant, grâce à son spectromètre de masse, de déterminer la composition du mélange supposé provenir de l’océan. Des espèces volatiles telles que l’hydrogène, le dioxyde de carbone et le méthane, ont été détectées en plus de l’eau.

Une équipe de scientifiques Français et Américains a montré que dans les conditions de l’océan interne d’Encelade, des clathrates, une forme particulière de la glace d’eau contenant des gaz piégés dans des cages, pourraient se former et appauvrir l’océan en espèces volatiles.

Les résultats des simulations de l’équipe montrent qu’en particulier le méthane est très efficacement piégé dans les clathrates, et qu’il devient presque dix fois moins abondant dans l’océan que la valeur mesurée dans les geysers. Pour que Cassini puisse observer autant de méthane, celui-ci doit donc être ajouté dans l’océan par une source inconnue de manière encore plus rapide que sa séquestration ne le permet dans les clathrates.

Les implications sont particulièrement intéressantes étant donné que le méthane peut être produit par des réactions hydrothermales ou par des sources biogéniques. La possibilité d’une activité hydrothermale dans l’océan d’Encelade est notamment appuyée par la présence de nanoparticules de silicates dans les geysers détectées par Cassini. En outre, le fond de l’océan glacial de cette lune de Saturne pourrait aussi abriter des points chauds, avec des températures dépassant 100°C.

Une autre explication de la mesure de l’abondance du méthane par Cassini serait que les clathrates fassent partie du processus de formation des panaches : apportés par l’eau à des profondeurs plus faibles, ils ne peuvent plus exister en raison de la baisse de pression et se dissocient, libérant leur contenu et participant à la saturation de l’eau en gaz. De la même manière que le dioxyde de carbone fait sauter le bouchon d’une bouteille de Champagne, cette saturation en gaz ferait rejaillir l’eau en surface, qui continuerait son chemin vers l’espace jusqu’aux endroits où Cassini a réalisé ses prélèvements.

La mission Cassini, étendue jusqu’en 2017, continuera à effectuer des mesures de la composition des gaz présents dans les geysers d’Encelade. Ces mesures ultérieures permettront d’avoir une idée plus claire concernant les mécanismes de production de ces plumes et ainsi de mieux comprendre l’origine du méthane détecté.

Laboratoires impliqués :

LAM – Laboratoire d’Astrophysique de Marseille (Aix-Marseille Université / CNRS) UTINAM – Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (Université de Franche-Comté / CNRS) Southwest Research Institute, San Antonio, Texas, USA University of Texas at San Antonio, USA

Classé sous :Océan, Univers Balisé avec :Communiqué de presse

Des miroirs pour observer les exoplanètes

9 juin 2022 by osuadmin

Un reportage vidéo du CNRS vient de paraître sur un savoir-faire qui fait la renommée internationale d’un laboratoire marseillais.

Réaliser des instruments d’observation de l’Univers fait appel à des compétences multidisciplinaires de haut niveau, notamment en optique pour élaborer des miroirs toujours plus performants. Dans ce domaine, le Laboratoire d’astrophysique de Marseille (LAM) [1] développe depuis plus de 40 ans un savoir-faire unique dans la réalisation d’optiques asphériques d’extrême qualité de surface, qu’il est le seul à maitriser à ce niveau de précision au niveau mondial. Ce savoir-faire unique lui a valu d’être sollicité dernièrement par la NASA pour participer à la conception du télescope spatial Nancy-Grace-Roman, chargé d’étudier l’énergie noire, détecter des exoplanètes et cartographier le ciel dans l’infrarouge, qui devrait être lancé en mai 2027. Avec l’aide et le support du CNES, le LAM a ainsi pu livrer l’ensemble des miroirs à la NASA en juillet 2021 puis juin 2022.Reportage CNRS | Des miroirs infiniment polis

23.05.2022

C’est un savoir-faire qui a fait la renommée mondiale du Laboratoire d’astrophysique de Marseille : actuellement, on y polit, avec une infinie méticulosité, des petits miroirs de 6 cm. Huit d’entre eux, commandés par la Nasa, seront envoyés en 2027 dans l’espace à bord du Roman Space Telescope, la première mission spatiale conçue pour l’imagerie des exoplanètes. Leur polissage doit être parfait pour capter et renvoyer les lumières de faible intensité des exoplanètes.

Consulter : Le reportage photo de CNRS Images

Voir en ligne : Retrouvez ce communiqué sur le site de la DR12

Classé sous :Terre, Univers Balisé avec :Communiqué de presse

Adoption de la mission d’exploration spatiale Comet Interceptor

13 juin 2022 by osuadmin

La mission spatiale Comet Interceptor vient d’être adoptée par l’Agence Spatiale Européenne (ESA) pour être la prochaine mission d’exploration du système solaire. Développée en collaboration avec l’agence spatiale japonaise (JAXA), plusieurs agences spatiales nationales et centres de recherches en Europe, dont le CNES et le CNRS, Comet Interceptor sera la première mission spatiale à visiter une comète issue des confins du système solaire, voire hors du système solaire. Une particularité unique de cette mission spatiale sera de rester en attente dans le système solaire avant de fondre vers cette comète. Une telle comète ne pourra être découverte que dans quelques années et potentiellement après que Comet Interceptor quittera la Terre.

La mission d’exploration spatiale Comet Interceptor, proposée par la communauté scientifique européenne et pré-sélectionnée par l’ESA en 2019 pour étudier sa faisabilité, vient d’être adoptée le 8 juin 2022 par l’ESA. Elle sera implémentée dans les prochaines années pour être lancée en 2029.Comet Interceptor peut être considérée comme une descendante des missions cométaires pionnières de l’ESA Giotto et Rosetta. Elle est cependant différente, d’une part, parce qu’elle fournira les premières observations simultanées – en trois points différents – d’un objet situé en dehors de l’environnement terrestre, et, d’autre part, parce qu’elle ciblera une comète visitant le système solaire interne pour la première fois – provenant probablement du vaste nuage d’Oort entourant les extrémités du système solaire. Ce type de comète ne peut être observé que quelques années avant d’entrer dans le système solaire interne, si bien que l’une des singularités de la mission Comet Interceptor est que sa cible n’a pas encore été découverte, même si elle a déjà commencé son voyage vers nous.

Comet Interceptor sera composée de trois sondes spatiales. Le vaisseau composite attendra patiemment en un point du système solaire (le point de Lagrange L2) une comète cible appropriée, puis voyagera conjointement avant que les trois sondes spatiales qui la composent ne se séparent quelques semaines avant d’intercepter la comète. Ses trois engins spatiaux effectueront alors des observations simultanées autour de la comète. Chaque sonde spatiale sera équipée d’instruments scientifiques spécifiques qui fourniront des informations complémentaires sur le noyau de la comète et son environnement de gaz, de poussière et de plasma, pour comprendre la nature d’une comète primitive en interaction avec l’environnement du vent solaire en constante évolution. Ils créeront ainsi le premier profil 3D d’une comète venant du nuage d’Oort, contenant des matériaux ayant survécu depuis la formation du Soleil et des planètes.

PNG - 153.2 ko

La mission spatiale comet interceptor attendra dans le système solaire avant de partir intercepter une comète issue des confins du système solair.

Crédit : ESA

Le CNRS et le CNES participent pleinement à la mission Comet Interceptor à travers des contributions à 4 instruments embarqués, dont deux sont directement sous responsabilité française. Le CNRS est aussi responsable de la coordination de la modélisation scientifique, crucial pour la sélection de la comète cible. Des astrophysiciens de 10 laboratoires français (LPC2E à Orléans ; IRAP et LAPLACE à Toulouse ; LAM à Marseille ; LAB à Bordeaux ; LGLTPE à Lyon ; Lagrange à Nice ; IMCCE, LESIA, LATMOS à Paris) sont aujourd’hui impliqués dans la mission. Les contributions françaises à Comet Interceptor illustrent le fort héritage scientifique et technique acquis par la communauté scientifique française avec la fructueuse précédente mission spatiale cométaire Rosetta.

Le Laboratoire d’Astrophysique de Marseille (Aix Marseille Univ, CNRS, CNES) fournit le miroir primaire de la caméra CoCa. Cette caméra est développée par l’Université de Berne, en Suisse, et fournira des images couleurs du noyau et de son environnement proche pendant la phase d’approche et de survol. Ces images serviront à mieux comprendre l’origine de cette comète et ses processus d’évolution.

Classé sous :Univers Balisé avec :Communiqué de presse

Une nouvelle vision de la formation de Jupiter

12 juillet 2022 by osuadmin

En 1995, la sonde atmosphérique Galileo de la NASA réalise la première mesure in situ de la composition de l’atmosphère de Jupiter. Elle révèle que l’atmosphère est enrichie en éléments volatils, tel que le carbone, l’azote, le phosphore ou les gaz nobles, mais que l’oxygène, présent sous forme d’eau, est moins abondant. De nombreuses théories sont développées pour expliquer ces observations, mais certains scientifiques remettent également en question les mesures.

Après 15 ans de préparation et 5 ans de trajet Terre-Jupiter, la sonde Juno de la NASA effectue une nouvelle mesure en 2020. Les données confirment les enrichissements mesurés par Galileo, mais elles indiquent aussi un enrichissement en oxygène. Il devient donc nécessaire de réviser les théories de la formation du système jovien.

Pour tenter d’expliquer la composition de l’atmosphère de Jupiter, une équipe de recherche, comprenant des chercheurs du laboratoire d’astrophysique de Marseille de l’INSU, propose une nouvelle théorie pour la formation de Jupiter, compatible avec les mesures de Juno. Leur modèle simule l’évolution de la nébuleuse protosolaire, disque de gaz et de poussières en orbite autour du Soleil avant la formation des planètes. Les planètes se créent à partir de la matière contenue dans ce disque, qui peut être sous forme solide ou gazeuse. Jusqu’à maintenant, l’enrichissement en volatils dans Jupiter était attribué à un bombardement de son enveloppe par une masse importante de roches et de glaces au cours de sa croissance. Les résultats de ce modèle montrent que l’enveloppe de Jupiter aurait pu se former directement en amassant du gaz enrichi en volatils, sans qu’un apport en matériaux solides soit requis au cours de sa croissance.

JPEG - 156.5 ko

Vue d’artiste de la sonde atmosphérique Galileo (au centre) entrant dans l’atmosphère de Jupiter le 13 juillet 1995. L’orbiteur (à gauche) est resté en orbite pour recevoir les données de la sonde et les envoyer vers la Terre.

Crédit : NASA

Classé sous :Univers Balisé avec :Communiqué de presse, Résultat scientifique

  • « Aller à la page précédente
  • Page 1
  • Pages provisoires omises …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Pages provisoires omises …
  • Page 25
  • Aller à la page suivante »

Barre latérale principale

Articles récents

  • Bonus défense « Esprit de défense »
  • Festival de l’engagement 2025
  • Les ateliers du SUIO
  • Identification de la zone de formation des chondrites carbonées
  • Juno identifie l’empreinte aurorale manquante de la lune Callisto sur les pôles de Jupiter

Commentaires récents

Aucun commentaire à afficher.

Archives

  • septembre 2025
  • juillet 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • avril 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • septembre 2023
  • août 2023
  • juillet 2023
  • juin 2023
  • mai 2023
  • avril 2023
  • mars 2023
  • février 2023
  • décembre 2022
  • novembre 2022
  • octobre 2022
  • septembre 2022
  • août 2022
  • juillet 2022
  • juin 2022
  • avril 2022
  • mars 2022
  • février 2022
  • janvier 2022
  • décembre 2021
  • novembre 2021
  • octobre 2021
  • septembre 2021
  • juillet 2021
  • mai 2021
  • avril 2021
  • mars 2021
  • février 2021
  • janvier 2021
  • juin 2020
  • avril 2020
  • mars 2020
  • juillet 2018
  • juin 2018
  • mai 2018
  • mars 2018
  • janvier 2018
  • décembre 2017
  • novembre 2017
  • octobre 2017
  • septembre 2017
  • juillet 2017
  • juin 2017
  • mai 2017
  • avril 2017
  • mars 2017
  • janvier 2017
  • décembre 2016
  • novembre 2016
  • octobre 2016
  • septembre 2016
  • août 2016
  • juillet 2016
  • juin 2016
  • mai 2016
  • avril 2016
  • mars 2016
  • janvier 2016
  • novembre 2015
  • octobre 2015
  • septembre 2015
  • août 2015
  • juillet 2015
  • juin 2015
  • avril 2015
  • mars 2015
  • février 2015
  • janvier 2015
  • novembre 2014
  • septembre 2014
  • juillet 2014
  • juin 2014
  • mai 2014
  • mars 2014
  • février 2014
  • janvier 2014
  • décembre 2013
  • novembre 2013
  • septembre 2013
  • août 2013
  • juillet 2013
  • juin 2013
  • avril 2013
  • mars 2013
  • septembre 2012
  • juillet 2012
  • juin 2012
  • mars 2012
  • décembre 2011
  • juillet 2011
  • janvier 2011

Catégories

  • Atmosphère
  • Biodiversité
  • Biologie
  • Chimie
  • Climat
  • Écologie
  • Environnement
  • Ingénierie
  • Interactions Homme-Milieu
  • Non classé
  • Océan
  • Paléontologie
  • Santé
  • Surface continentale
  • Terre
  • Univers
loader

Siège de l’OSU Institut Pythéas

OSU Institut Pythéas c/o CEREGE Europôle Méditerranée Site de l’Arbois 13545 AIX EN PROVENCE CEDEX 4

Campus de rattachement administratif principal

OSU Institut Pythéas Campus de Luminy OCEANOMED Bâtiment 26M 163 avenue de Luminy - Case 901 13009 MARSEILLE
Tél. 04.86.09.05.00

Renseignements

Pour toute demande ecrivez au secrétariat de l’OSU Institut Pythéas.

Nous suivre

Nos tutelles :
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle
  • Logo tutelle

Copyright © 2025 · OSU Pytheas - News sur Genesis Framework · WordPress · Se connecter